Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Clean Technol Environ Policy ; 24(3): 851-862, 2022.
Article in English | MEDLINE | ID: mdl-34840550

ABSTRACT

This paper reviews the progress and effectiveness of Programs to Control Vehicle Emissions (PCVEs), comparing the experiences in the United States (US), European Union (EU), China, and Brazil. We present a timeline comparison of updates and differences in standards for light-duty vehicle (LDV) compliance. We then review the benefits of controlling LDV emissions on air quality, derived from previous relevant studies. Emission standards have been increasingly restricted in all evaluated PCVEs. However, some technical aspects such as dynamometer test cycles, re-testing structure of environmental protection agency, homogeneity of new and in-use vehicles inspection and maintenance, on-board diagnostics requirements are more consolidated in the US. Previous studies at different scales show the success of PCVEs in reducing vehicle emissions and air pollutant concentrations in the US, EU, China, and Brazil. Despite PCVEs has been achieving relative success, vehicular emissions are still a major threat to air quality around the world, especially in developing countries or ascending economies whose fleet grows dramatically. In places where the air quality standards recommended by the World Health Organization (WHO) are violated, it would be required the implementation of more stringent regulations with a well-designed, and homogeneous compliance policy over regional and national territories. This work contributes to clarifying the current challenges and successful experiences on regulating vehicular emissions worldwide. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10098-021-02238-1.

2.
Environ Sci Pollut Res Int ; 25(24): 24192-24200, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29948698

ABSTRACT

Ethanol is a renewable fuel and it is considered an alternative to gasoline in Otto-cycle engines. The present study evaluated the behavior of exhaustion gas carbon monoxide (CO) and total hydrocarbons (THC) according to the levels of anhydrous ethyl alcohol (AEA) added to gasoline in different proportions (E0, E10, E20, E27, that is, pure gasoline and its blends with AEA at 10, 20, and 27% v/v) in the use of non-road single cylinder engines of different powers (13 and 6.5 hp), to the loads applied to engine-generators and the air-fuel ratio (A/F) admitted to the engine cylinders. Also, the performance of engine-generators was verified in terms of mass, specific and energetic consumption and efficiency of the evaluated systems for the same blends and loads. The results showed that an increase in the AEA content in the blend resulted in significant drops in CO and THC concentrations for both engine-generators, while fuel consumption showed a slight upward trend; the increases in applied loads resulted in an increase in CO and THC concentrations and fuel consumption. In general, a higher AEA content (oxygenated) in the blends had a greater effect on gaseous emissions compared to the effect on consumption and system efficiency.


Subject(s)
Ethanol/chemistry , Gasoline , Vehicle Emissions/analysis , Carbon Monoxide/analysis , Equipment Design , Hydrocarbons/analysis , Oxygen/chemistry
3.
Environ Sci Pollut Res Int ; 24(25): 20354-20359, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28707238

ABSTRACT

This study investigates the effects of several blends of gasoline and anhydrous ethanol on exhaust emission concentrations of carbon monoxide (CO), total hydrocarbons (HCs), and nitrogen oxides (NOx) from a small spark-ignited non-road engine (SSINRE). Tests were carried out for different air/fuel equivalence ratios as measured by lambda (λ). A 196 cm3 single-cylinder four-stroke engine-generator operating at a constant load of 2.0 kW was used; pollutant gas concentrations were measured with an automatic analyzer similar to those typically used in vehicle inspections. The results showed that as the ethanol content of the mixture increased the concentrations of CO, HCs, and NOx reduced by 15, 53, and 34%, respectively, for values of λ < 1 (rich mixture) and by 52, 31, and 16% for values of λ > 1 (lean mixture). Overall, addition of anhydrous ethanol to the gasoline helped to reduce emissions of the pollutant gases investigated, what contributes to photochemical smog reduction and quality of life in urban areas.


Subject(s)
Air Pollutants/analysis , Biofuels/analysis , Ethanol/chemistry , Gasoline/analysis , Vehicle Emissions/analysis , Carbon Monoxide/analysis , Hydrocarbons/analysis , Nitrogen Oxides/analysis , Quality of Life , Vehicle Emissions/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL