Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Plants (Basel) ; 12(21)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37960088

ABSTRACT

Leaf glands are found in many Rhamnaceae species, the buckthorn family, and are frequently used in taxonomic studies of the group, especially because they are easily visible to the naked eye. Despite the many records and extensive use in the taxonomy of the family, few studies deal with the classification of these glands and their roles for the plant. Thus, this study aimed to unravel the type, functioning, and putative functions of the leaf glands of three Brazilian forest species: Colubrina glandulosa Perkins, Gouania polygama (Jacq.) Urb., and Rhamnidium elaeocarpum Reissek. Leaves were collected and processed for surface, anatomical, histochemical, and ultrastructural analyses. In addition, the presence of visitor animals was registered in the field. The leaf glands of C. glandulosa and G. polygama are defined as extrafloral structured nectaries due to their anatomical structure, interaction with ants, and the presence of reduced sugars and of a set of organelles in the secretory cells. The unusual mechanism of nectar release and exposure in an apical pore stands out in G. polygama. The glands of R. elaeocarpum are ducts or cavities that secrete phenolic oil resin. Their presence is an atypical condition in the family, although they are often confused with mucilage reservoirs, much more common in Rhamnaceae. The extrafloral nectary, secretory cavity, and duct are associated with plant protection against phytophages, either by attracting patrol ants or by making the organs deterrent. Our data, combined with other previously obtained data, attest to the great diversity of gland types found in Rhamnaceae species.

2.
Plants (Basel) ; 12(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36678960

ABSTRACT

Rhamnaceae flowers have a peculiar morphology, including keeled sepals, one stamen whorl closely related to the petals, and a broad perigynous hypanthium that supports a voluminous nectary. In the present investigation, we detailed the flower development of five Rhamnaceae species to understand the origin of such specific floral characteristics. Floral buds and flowers were processed for surface and histological analyses. The sepals emerge in sequential order and the other organs in simultaneous order. The development of the perigynous hypanthium renders the floral apex broad and concave. The sepals undergo abaxial thickening early on, forming a keel and strongly influencing the floral merosity. Petals and stamens appear close to each other on the same radius in a very short plastochron. The carpels unite soon after their emergence, forming a syncarpous ovary and free style branches. Differences in intercalary carpel growth promote the formation of inferior (Gouania virgata) and semi-inferior ovaries (Colubrina glandulosa, Hovenia dulcis, and Sarcomphalus joazeiro). Rhamnidium elaeocarpum does not undergo such growth, and the resulting ovary is superior. The keeled sepals promote the isolation of the petal-stamen pair inside the flower bud. The possibility of a common primordium that the originates petal and stamen is refuted. Comparisons with other Rosales families provide insights into the floral origin and diversification of Rhamnaceae.

SELECTION OF CITATIONS
SEARCH DETAIL