Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 243
Filter
1.
Front Immunol ; 15: 1260439, 2024.
Article in English | MEDLINE | ID: mdl-38863700

ABSTRACT

Dengue virus (DENV), transmitted by infected mosquitoes, is a major public health concern, with approximately half the world's population at risk for infection. Recent decades have increasing incidence of dengue-associated disease alongside growing frequency of outbreaks. Although promising progress has been made in anti-DENV immunizations, post-infection treatment remains limited to non-specific supportive treatments. Development of antiviral therapeutics is thus required to limit DENV dissemination in humans and to help control the severity of outbreaks. Dendritic cells (DCs) are amongst the first cells to encounter DENV upon injection into the human skin mucosa, and thereafter promote systemic viral dissemination to additional human target cells. Autophagy is a vesicle trafficking pathway involving the formation of cytosolic autophagosomes, and recent reports have highlighted the extensive manipulation of autophagy by flaviviruses, including DENV, for viral replication. However, the temporal profiling and function of autophagy activity in DENV infection and transmission by human primary DCs remains poorly understood. Herein, we demonstrate that mechanisms of autophagosome formation and extracellular vesicle (EV) release have a pro-viral role in DC-mediated DENV transmission. We show that DENV exploits early-stage canonical autophagy to establish infection in primary human DCs. DENV replication enhanced autophagosome formation in primary human DCs, and intrinsically-heightened autophagosome biogenesis correlated with relatively higher rates of DC susceptibility to DENV. Furthermore, our data suggest that viral replication intermediates co-localize with autophagosomes, while productive DENV infection introduces a block at the late degradative stages of autophagy in infected DCs but not in uninfected bystander cells. Notably, we identify for the first time that approximately one-fourth of DC-derived CD9/CD81/CD63+ EVs co-express canonical autophagy marker LC3, and demonstrate that DC-derived EV populations are an alternative, cell-free mechanism by which DCs promote DENV transmission to additional target sites. Taken together, our study highlights intersections between autophagy and secretory pathways during viral infection, and puts forward autophagosome accumulation and viral RNA-laden EVs as host determinants of DC-mediated DENV infection in humans. Host-directed therapeutics targeting autophagy and exocytosis pathways thus have potential to enhance DC-driven resistance to DENV acquisition and thereby limit viral dissemination by initial human target cells following mosquito-to-human transmission of DENV.


Subject(s)
Autophagosomes , Autophagy , Dendritic Cells , Dengue Virus , Dengue , Secretory Pathway , Virus Replication , Humans , Dengue Virus/physiology , Dendritic Cells/immunology , Dendritic Cells/virology , Dendritic Cells/metabolism , Dengue/transmission , Dengue/virology , Dengue/immunology , Autophagosomes/metabolism , Extracellular Vesicles/metabolism , Extracellular Vesicles/virology , Cells, Cultured
2.
J Infect Dis ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38573164

ABSTRACT

Dysbiosis of the vaginal microbiome poses a serious risk for sexual HIV-1 transmission. Prevotella spp. are abundant during vaginal dysbiosis and associated with enhanced HIV-1 susceptibility; however, underlying mechanisms remain unclear. Here, we investigated the direct effect of vaginal bacteria on HIV-1 susceptibility of vaginal CD4+ T cells. Notably, pre-exposure to Prevotella timonensis enhanced HIV-1 uptake by vaginal T cells, leading to increased viral fusion and enhanced virus production. Pre-exposure to antiretroviral inhibitors abolished Prevotella timonensis-enhanced infection. Hence, our study shows that the vaginal microbiome directly affects mucosal CD4+ T cell susceptibility, emphasising importance of vaginal dysbiosis diagnosis and treatment.

3.
Nat Commun ; 15(1): 2465, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38548722

ABSTRACT

Chronic HIV-1 infection is characterized by T-cell dysregulation that is partly restored by antiretroviral therapy. Autophagy is a critical regulator of T-cell function. Here, we demonstrate a protective role for autophagy in HIV-1 disease pathogenesis. Targeted analysis of genetic variation in core autophagy gene ATG16L1 reveals the previously unidentified rs6861 polymorphism, which correlates functionally with enhanced autophagy and clinically with improved survival of untreated HIV-1-infected individuals. T-cells carrying ATG16L1 rs6861(TT) genotype display improved antiviral immunity, evidenced by increased proliferation, revamped immune responsiveness, and suppressed exhaustion/immunosenescence features. In-depth flow-cytometric and transcriptional profiling reveal T-helper-cell-signatures unique to rs6861(TT) individuals with enriched regulation of pro-inflammatory networks and skewing towards immunoregulatory phenotype. Therapeutic enhancement of autophagy recapitulates the rs6861(TT)-associated T-cell traits in non-carriers. These data underscore the in vivo relevance of autophagy for longer-lasting T-cell-mediated HIV-1 control, with implications towards development of host-directed antivirals targeting autophagy to restore immune function in chronic HIV-1 infection.


Subject(s)
HIV Infections , HIV-1 , Humans , HIV-1/genetics , Autophagy-Related Proteins/genetics , Polymorphism, Genetic , Autophagy/genetics , HIV Infections/drug therapy , HIV Infections/genetics
4.
J Anim Breed Genet ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38551070

ABSTRACT

Aneuploidy is a genetic condition characterized by the loss or gain of one or more chromosomes. Aneuploidy affecting the sex chromosomes can lead to infertility in otherwise externally phenotypically normal cattle. Early identification of cattle with sex chromosomal aneuploidy is important to minimize the costs associated with rearing infertile cattle and futile breeding attempts. As most livestock breeding programs routinely genotype their breeding populations using single nucleotide polymorphism (SNP) arrays, this study aimed to assess the feasibility of integrating an aneuploidy screening tool into the existing pipelines that handle dense SNP genotype data. A further objective was to estimate the prevalence of sex chromosome aneuploidy in a population of 146,431 juvenile cattle using available genotype intensity data. Three genotype intensity statistics were used: the LogR Ratio (LRR), R-value (the sum of X and Y SNP probe intensities), and B-allele frequency (BAF) measurements. Within the female-verified population of 124,958 individuals, the estimated prevalence rate was 0.0048% for XO, 0.0350% for XXX, and 0.0004% for XXY. The prevalence of XXY in the male-verified population was 0.0870% (i.e., 18 out of 20,670 males). Cytogenetic testing was used to verify 2 of the XXX females who were still alive. The proposed approach can be readily integrated into existing genomic pipelines, serving as an efficient, large-scale screening tool for aneuploidy. Its implementation could enable the early identification of infertile animals with sex-chromosome aneuploidy.

5.
ERJ Open Res ; 10(1)2024 Jan.
Article in English | MEDLINE | ID: mdl-38226069

ABSTRACT

Rescue of N1303K CFTR by highly effective modulator therapy (HEMT) is enabled by CF airway inflammation. These findings suggest that evaluation of HEMT for rare CFTR mutations must be performed under inflammatory conditions relevant to CF airways. https://bit.ly/3tTcoJE.

6.
Am J Respir Crit Care Med ; 209(4): 374-389, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38016030

ABSTRACT

Rationale: Non-cystic fibrosis bronchiectasis (NCFB) may originate in bronchiolar regions of the lung. Accordingly, there is a need to characterize the morphology and molecular characteristics of NCFB bronchioles. Objectives: Test the hypothesis that NCFB exhibits a major component of bronchiolar disease manifest by mucus plugging and ectasia. Methods: Morphologic criteria and region-specific epithelial gene expression, measured histologically and by RNA in situ hybridization and immunohistochemistry, identified proximal and distal bronchioles in excised NCFB lungs. RNA in situ hybridization and immunohistochemistry assessed bronchiolar mucus accumulation and mucin gene expression. CRISPR-Cas9-mediated IL-1R1 knockout in human bronchial epithelial cultures tested IL-1α and IL-1ß contributions to mucin production. Spatial transcriptional profiling characterized NCFB distal bronchiolar gene expression. Measurements and Main Results: Bronchiolar perimeters and lumen areas per section area were increased in proximal, but not distal, bronchioles in NCFB versus control lungs, suggesting proximal bronchiolectasis. In NCFB, mucus plugging was observed in ectatic proximal bronchioles and associated nonectatic distal bronchioles in sections with disease. MUC5AC and MUC5B mucins were upregulated in NCFB proximal bronchioles, whereas MUC5B was selectively upregulated in distal bronchioles. Bronchiolar mucus plugs were populated by IL-1ß-expressing macrophages. NCFB sterile sputum supernatants induced human bronchial epithelial MUC5B and MUC5AC expression that was >80% blocked by IL-1R1 ablation. Spatial transcriptional profiling identified upregulation of genes associated with secretory cells, hypoxia, interleukin pathways, and IL-1ß-producing macrophages in mucus plugs and downregulation of epithelial ciliogenesis genes. Conclusions: NCFB exhibits distinctive proximal and distal bronchiolar disease. Both bronchiolar regions exhibit bronchiolar secretory cell features and mucus plugging but differ in mucin gene regulation and ectasia.


Subject(s)
Bronchiectasis , Cystic Fibrosis , Humans , Bronchioles , Dilatation, Pathologic , Bronchiectasis/genetics , Mucins/metabolism , Interleukin-1beta , Fibrosis , RNA , Mucin 5AC/genetics
7.
Small ; 20(23): e2310288, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38150615

ABSTRACT

Biohybrid micromotors are active microscopic agents consisting of biological and synthetic components that are being developed as novel tools for biomedical applications. By capturing motile sperm cells within engineered microstructures, they can be controlled remotely while being propelled forward by the flagellar beat. This makes them an interesting tool for reproductive medicine that can enable minimally invasive sperm cell delivery to the oocyte in vivo, as a treatment for infertility. The generation of sperm-based micromotors in sufficiently large numbers, as they are required in biomedical applications has been challenging, either due to the employed fabrication techniques or the stability of the microstructure-sperm coupling. Here, biohybrid micromotors, which can be assembled in a fast and simple process using magnetic microparticles, are presented. These magnetotactic sperm cells show a high motility and swimming speed and can be transferred between different environments without large detrimental effects on sperm motility and membrane integrity. Furthermore, clusters of micromotors are assembled magnetically and visualized using dual ultrasound (US)/photoacoustic (PA) imaging. Finally, a protocol for the scaled-up assembly of micromotors and their purification for use in in vitro fertilization (IVF) is presented, bringing them closer to their biomedical implementation.


Subject(s)
Sperm Motility , Spermatozoa , Spermatozoa/physiology , Male , Sperm Motility/physiology , Reproductive Techniques, Assisted , Humans , Magnetics , Animals
8.
Front Endocrinol (Lausanne) ; 14: 1280847, 2023.
Article in English | MEDLINE | ID: mdl-38027209

ABSTRACT

Background: In vitro maturation (IVM) of germinal vesicle intact oocytes prior to in vitro fertilization (IVF) is practiced widely in animals. In human assisted reproduction it is generally reserved for fertility preservation or where ovarian stimulation is contraindicated. Standard practice incorporates complex proteins (CP), in the form of serum and/or albumin, into IVM media to mimic the ovarian follicle environment. However, the undefined nature of CP, together with batch variation and ethical concerns regarding their origin, necessitate the development of more defined formulations. A known component of follicular fluid, melatonin, has multifaceted roles including that of a metabolic regulator and antioxidant. In certain circumstances it can enhance oocyte maturation. At this stage in development, the germinal-vesicle intact oocyte is prone to aneuploidy and epigenetic dysregulation. Objectives: To determine the developmental, cytogenetic and epigenetic consequences of removing CP and including melatonin during bovine IVM. Materials and methods: The study comprised a 2 x 2 factorial arrangement comparing (i) the inclusion or exclusion of CP, and (ii) the addition (100 nM) or omission of melatonin, during IVM. Cumulus-oocyte complexes (COCs) were retrieved from stimulated cycles. Following IVM and IVF, putative zygotes were cultured to Day 8 in standard media. RNAseq was performed on isolated cumulus cells, cytogenetic analyses (SNP-based algorithms) on isolated trophectoderm cells, and DNA methylation analysis (reduced representation bisulfite sequencing) on isolated cells of the inner-cell mass. Results: Removal of CP during IVM led to modest reductions in blastocyst development, whilst added melatonin was beneficial in the presence but detrimental in the absence of CP. The composition of IVM media did not affect the nature or incidence of chromosomal abnormalities but cumulus-cell transcript expression indicated altered metabolism (primarily lipid) in COCs. These effects preceded the establishment of distinct metabolic and epigenetic signatures several days later in expanded and hatching blastocysts. Conclusions: These findings highlight the importance of lipid, particularly sterol, metabolism by the COC during IVM. They lay the foundation for future studies that seek to develop chemically defined systems of IVM for the generation of transferrable embryos that are both cytogenetically and epigenetically normal.


Subject(s)
Melatonin , Female , Animals , Cattle , Humans , Melatonin/pharmacology , Melatonin/metabolism , In Vitro Oocyte Maturation Techniques , Oocytes/metabolism , Cytogenetic Analysis , Epigenesis, Genetic , Lipids
9.
Cells ; 12(22)2023 11 13.
Article in English | MEDLINE | ID: mdl-37998353

ABSTRACT

People with cystic fibrosis (pwCF) suffer from chronic and recurring bacterial lung infections that begin very early in life and contribute to progressive lung failure. CF is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, which encodes an ion channel important for maintaining the proper hydration of pulmonary surfaces. When CFTR function is ablated or impaired, airways develop thickened, adherent mucus that contributes to a vicious cycle of infection and inflammation. Therapeutics for pwCF, called CFTR modulators, target the CFTR defect directly, restoring airway surface hydration and mucociliary clearance. However, even with CFTR modulator therapy, bacterial infections persist. To develop a relevant model of diseased airway epithelium, we established a primary human airway epithelium culture system with persistent Pseudomonas aeruginosa infection. We used this model to examine the effects of CFTR modulators on CFTR maturation, CFTR function, and bacterial persistence. We found that the presence of P. aeruginosa increased CFTR mRNA, protein, and function. We also found that CFTR modulators caused a decrease in P. aeruginosa burden. These results demonstrate the importance of including live bacteria to accurately model the CF lung, and that understanding the effects of infection on CFTR rescue by CFTR modulators is critical to evaluating and optimizing drug therapies for all pwCF.


Subject(s)
Cystic Fibrosis , Pseudomonas Infections , Humans , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Coculture Techniques , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Lung/metabolism
10.
Microorganisms ; 11(7)2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37512804

ABSTRACT

Localized cutaneous leishmaniasis caused by Leishmania braziliensis can either respond well or poorly to the treatment or heal spontaneously; It seems to be dependent on the parasite and/or host factors, but the mechanisms are not fully understood. We evaluated the in situ immune response in eighty-two active lesions from fifty-eight patients prior to treatment classified as early spontaneous regression (SRL-n = 14); treatment responders (GRL-n = 20); and non-responders (before first treatment/relapse, PRL1/PRL2-n = 24 each). Immunohistochemistry was used to identify cell/functional markers which were correlated with the clinical characteristics. PRL showed significant differences in lesion number/size, clinical evolution, and positive parasitological examinations when compared with the other groups. SRL presented a more efficient immune response than GRL and PRL, with higher IFN-γ/NOS2 and a lower percentage of macrophages, neutrophils, NK, B cells, and Ki-67+ cells. Compared to SRL, PRL had fewer CD4+ Tcells and more CD163+ macrophages. PRL1 had more CD68+ macrophages and Ki-67+ cells but less IFN-γ than GRL. PRL present a less efficient immune profile, which could explain the poor treatment response, while SRL had a more balanced immune response profile for lesion healing. Altogether, these evaluations suggest a differentiated profile of the organization of the inflammatory process for lesions of different tegumentary leishmaniasis evolution.

11.
J Mass Spectrom Adv Clin Lab ; 29: 9-15, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37449264

ABSTRACT

Background: Free thyroxine (FT4) measurement is one of the most requested tests in patient care for diagnosing and treating thyroid-related illnesses. Equilibrium dialysis (ED) is considered the "gold standard" for FT4 measurement; however, several factors have a profound effect on the reliability of FT4 assays and require special consideration. Methods: In the current study, we focused on evaluating critical factors that could contribute to reporting errors, such as adsorption of thyroxine (T4) to labware surfaces, stability of serum samples, stock solutions, and calibrator storage conditions, as well as the solvents used to prepare T4 solutions. Results: The adsorption of T4 in ethanolic solutions and dialysates to labware surfaces can be reduced with the careful selection of pipette tips, test tubes, and 96-well plates. Adding pH modifiers to neat T4 solutions can improve its stability. FT4 in serum samples remains stable after exposure to four freeze-thaw cycles, 5 °C for 18-20 h, or -70 °C for a minimum of three years. Conclusion: The presented study has demonstrated that the loss of analyte due to pre-analytical and analytical factors during operation of the FT4 reference measurement procedure (RMP) can be minimized by careful selection of all labware for sample preparation. It was found that the accuracy and imprecision of FT4 assays can be influenced by different types of dialysis devices, but acceptable alternatives to ED membranes were identified. This study demonstrates approaches to establish a FT4 method that is independent from specific suppliers and addresses critical pre-analytical and analytical factors important for FT4 measurements.

12.
Rev Soc Bras Med Trop ; 56: e00152023, 2023.
Article in English | MEDLINE | ID: mdl-37493729

ABSTRACT

BACKGROUND: The number of tuberculosis (TB) cases in prisons is higher than that in the general population and has been reported as the most common cause of death in prisons. This study evaluated the delay in the diagnosis and treatment of TB in Brazilian prisons. METHODS: A retrospective cohort study was conducted between 2007 and 2015 using data from the five largest male prisons in Mato Grosso do Sul, Brazil. TB case data was collected from the National Database of Notifiable Diseases (SINAN), GAL-LACEN, and prison medical records. The following variables were recorded: prison, year of diagnosis, age, race, education, HIV status, smoking status, comorbidities, number of symptoms, percentage of cures, delay in diagnosis, patient delay, provider delay, laboratory delay, and delay in treatment. Descriptive statistics were used for the variables of interest. RESULTS: A total of 362 pulmonary TB cases were identified. The average time between the first symptom and reporting of data was 94 days. The mean time between symptom onset and laboratory diagnosis was 91 days. The average time from symptom onset to first consultation was 80 days. The time between diagnosis and treatment initiation was 5 days. CONCLUSIONS: Delays were significant between reporting of the first symptoms and diagnosis and significantly smaller from the time between notification and start of treatment. Control strategies should be implemented to diagnose cases through active screening, to avoid delays in diagnosis and treatment, and to reduce TB transmission.


Subject(s)
Tuberculosis, Pulmonary , Tuberculosis , Humans , Male , Prisons , Brazil/epidemiology , Retrospective Studies , Tuberculosis/diagnosis , Tuberculosis/drug therapy , Tuberculosis/epidemiology , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/epidemiology
13.
ERJ Open Res ; 9(2)2023 Mar.
Article in English | MEDLINE | ID: mdl-36949961

ABSTRACT

The Respiratory Intensive Care Assembly of the European Respiratory Society gathered in Berlin to organise the second Respiratory Failure and Mechanical Ventilation Conference in June 2022. The conference covered several key points of acute and chronic respiratory failure in adults. During the 3-day conference, ventilatory strategies, patient selection, diagnostic approaches, treatment and health-related quality of life topics were addressed by a panel of international experts. Lectures delivered during the event have been summarised by Early Career Members of the Assembly and take-home messages highlighted.

14.
Emerg Microbes Infect ; 12(1): 2195020, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36951188

ABSTRACT

SARS-CoV-2, the causative virus of COVID-19, continues to threaten global public health. COVID-19 is a multi-organ disease, causing not only respiratory distress, but also extrapulmonary manifestations, including gastrointestinal symptoms with SARS-CoV-2 RNA shedding in stool long after respiratory clearance. Despite global vaccination and existing antiviral treatments, variants of concern are still emerging and circulating. Of note, new Omicron BA.5 sublineages both increasingly evade neutralizing antibodies and demonstrate an increased preference for entry via the endocytic entry route. Alternative to direct-acting antivirals, host-directed therapies interfere with host mechanisms hijacked by viruses, and enhance cell-mediated resistance with a reduced likelihood of drug resistance development. Here, we demonstrate that the autophagy-blocking therapeutic berbamine dihydrochloride robustly prevents SARS-CoV-2 acquisition by human intestinal epithelial cells via an autophagy-mediated BNIP3 mechanism. Strikingly, berbamine dihydrochloride exhibited pan-antiviral activity against Omicron subvariants BA.2 and BA.5 at nanomolar potency, providing a proof of concept for the potential for targeting autophagy machinery to thwart infection of current circulating SARS-CoV-2 subvariants. Furthermore, we show that autophagy-blocking therapies limited virus-induced damage to intestinal barrier function, affirming the therapeutic relevance of autophagy manipulation to avert the intestinal permeability associated with acute COVID-19 and post-COVID-19 syndrome. Our findings underscore that SARS-CoV-2 exploits host autophagy machinery for intestinal dissemination and indicate that repurposed autophagy-based antivirals represent a pertinent therapeutic option to boost protection and ameliorate disease pathogenesis against current and future SARS-CoV-2 variants of concern.


Subject(s)
COVID-19 , Hepatitis C, Chronic , Humans , SARS-CoV-2 , Antiviral Agents/pharmacology , Post-Acute COVID-19 Syndrome , RNA, Viral , Antibodies, Neutralizing , Autophagy , Antibodies, Viral , Spike Glycoprotein, Coronavirus , Membrane Proteins
15.
Cells ; 12(5)2023 03 02.
Article in English | MEDLINE | ID: mdl-36899925

ABSTRACT

Preimplantation genetic testing for aneuploidy (PGT-A) is widespread, but controversial, in humans and improves pregnancy and live birth rates in cattle. In pigs, it presents a possible solution to improve in vitro embryo production (IVP), however, the incidence and origin of chromosomal errors remains under-explored. To address this, we used single nucleotide polymorphism (SNP)-based PGT-A algorithms in 101 in vivo-derived (IVD) and 64 IVP porcine embryos. More errors were observed in IVP vs. IVD blastocysts (79.7% vs. 13.6% p < 0.001). In IVD embryos, fewer errors were found at blastocyst stage compared to cleavage (4-cell) stage (13.6% vs. 40%, p = 0.056). One androgenetic and two parthenogenetic embryos were also identified. Triploidy was the most common error in IVD embryos (15.8%), but only observed at cleavage, not blastocyst stage, followed by whole chromosome aneuploidy (9.9%). In IVP blastocysts, 32.8% were parthenogenetic, 25.0% (hypo-)triploid, 12.5% aneuploid, and 9.4% haploid. Parthenogenetic blastocysts arose from just three out of ten sows, suggesting a possible donor effect. The high incidence of chromosomal abnormalities in general, but in IVP embryos in particular, suggests an explanation for the low success of porcine IVP. The approaches described provide a means of monitoring technical improvements and suggest future application of PGT-A might improve embryo transfer success.


Subject(s)
Aneuploidy , Fertilization in Vitro , Genetic Testing , Sus scrofa , Sus scrofa/embryology , Sus scrofa/genetics , Sus scrofa/physiology , Fertilization in Vitro/veterinary , Genetic Testing/methods , Embryonic Development , Blastocyst/physiology , Embryo, Mammalian/physiology , Embryo Transfer/veterinary , Polymorphism, Single Nucleotide , Algorithms , Animals , Chromosomes, Mammalian/genetics
16.
Int J Mol Sci ; 24(5)2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36902441

ABSTRACT

Cystic fibrosis transmembrane conductance regulator (CFTR) modulators, a new series of therapeutics that correct and potentiate some classes of mutations of the CFTR, have provided a great therapeutic advantage to people with cystic fibrosis (pwCF). The main hindrances of the present CFTR modulators are related to their limitations in reducing chronic lung bacterial infection and inflammation, the main causes of pulmonary tissue damage and progressive respiratory insufficiency, particularly in adults with CF. Here, the most debated issues of the pulmonary bacterial infection and inflammatory processes in pwCF are revisited. Special attention is given to the mechanisms favoring the bacterial infection of pwCF, the progressive adaptation of Pseudomonas aeruginosa and its interplay with Staphylococcus aureus, the cross-talk among bacteria, the bronchial epithelial cells and the phagocytes of the host immune defenses. The most recent findings of the effect of CFTR modulators on bacterial infection and the inflammatory process are also presented to provide critical hints towards the identification of relevant therapeutic targets to overcome the respiratory pathology of pwCF.


Subject(s)
Cystic Fibrosis , Staphylococcal Infections , Adult , Humans , Cystic Fibrosis/drug therapy , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Lung/pathology , Host-Pathogen Interactions , Pseudomonas aeruginosa/genetics
17.
Parasitol Res ; 122(5): 1213-1219, 2023 May.
Article in English | MEDLINE | ID: mdl-36897382

ABSTRACT

The in vitro feeding of ticks facilitates the conduction of studies involving the intrinsic vector-pathogen relationship, susceptibility tests, and resistance to acaricides, in addition to mimicking the use of experimental hosts. The objective of this study was to establish an in vitro feeding system using silicone membranes to supply various diets to the species Ornithodoros rostratus. Each experimental group included 130 first-instar O. rostratus nymphs. The groups were divided according to the diet provided: citrated rabbit blood, citrated bovine blood, bovine blood with antibiotics, and defibrinated bovine blood. The control group was fed directly on rabbits. Ticks were weighed before and after the feeding and monitored individually according to their biological parameters. The results of the experiment demonstrated that the proposed system was efficient in terms of fixation stimulus and satisfactory in terms of tick engorgement, which would allow the maintenance of O. rostratus colonies by using artificial feeding through silicone membranes. All diets provided were efficient for the maintenance of colonies, but the ticks that received citrated rabbit blood displayed similar biological parameters to those observed under in vivo feeding conditions.


Subject(s)
Acaricides , Ornithodoros , Animals , Cattle , Rabbits , Silicones , Nymph , Citrates , Citric Acid , Nutritional Support , Feeding Behavior
18.
Nat Commun ; 14(1): 728, 2023 02 09.
Article in English | MEDLINE | ID: mdl-36759511

ABSTRACT

Medical microrobotics is an emerging field that aims at non-invasive diagnosis and therapy inside the human body through miniaturized sensors and actuators. Such microrobots can be tethered (e.g., smart microcatheters, microendoscopes) or untethered (e.g., cell-based drug delivery systems). Active motion and multiple functionalities, distinguishing microrobots from mere passive carriers and conventional nanomedicines, can be achieved through external control with physical fields such as magnetism or ultrasound. Here we give an overview of the key challenges in the field of assisted reproduction and how these new technologies could, in the future, enable assisted fertilization in vivo and enhance embryo implantation. As a case study, we describe a potential intervention in the case of recurrent embryo implantation failure, which involves the non-invasive delivery of an early embryo back to the fertilization site using magnetically-controlled microrobots. As the embryo will be in contact with the secretory oviduct fluid, it can develop under natural conditions and in synchrony with the endometrium preparation. We discuss the potential microrobot designs, including a proper selection of materials and processes, envisioning their translation from bench to animal studies and human medicine. Finally, we highlight regulatory and ethical considerations for bringing this technology to the clinic.


Subject(s)
Reproductive Medicine , Robotics , Animals , Female , Humans , Reproduction , Nanomedicine , Technology
19.
Sci Rep ; 13(1): 3283, 2023 02 25.
Article in English | MEDLINE | ID: mdl-36841916

ABSTRACT

Vaginal inflammation increases the risk for sexual HIV-1 transmission but underlying mechanisms remain unclear. In this study we assessed the impact of immune activation on HIV-1 susceptibility of primary human vaginal Langerhans cells (LCs). Vaginal LCs isolated from human vaginal tissue expressed a broad range of TLRs and became activated after exposure to both viral and bacterial TLR ligands. HIV-1 replication was restricted in immature vaginal LCs as only low levels of infection could be detected. Notably, activation of immature vaginal LCs by bacterial TLR ligands increased HIV-1 infection, whereas viral TLR ligands were unable to induce HIV-1 replication in vaginal LCs. Furthermore, mature vaginal LCs transmitted HIV-1 to CD4 T cells. This study emphasizes the role for vaginal LCs in protection against mucosal HIV-1 infection, which is abrogated upon activation. Moreover, our data suggest that bacterial STIs can increase the risk of HIV-1 acquisition in women.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Sexually Transmitted Diseases , Humans , Female , Langerhans Cells , HIV-1/physiology , Ligands
20.
Rev. Soc. Bras. Med. Trop ; 56: e0015, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1449343

ABSTRACT

ABSTRACT Background: The number of tuberculosis (TB) cases in prisons is higher than that in the general population and has been reported as the most common cause of death in prisons. This study evaluated the delay in the diagnosis and treatment of TB in Brazilian prisons. Methods: A retrospective cohort study was conducted between 2007 and 2015 using data from the five largest male prisons in Mato Grosso do Sul, Brazil. TB case data was collected from the National Database of Notifiable Diseases (SINAN), GAL-LACEN, and prison medical records. The following variables were recorded: prison, year of diagnosis, age, race, education, HIV status, smoking status, comorbidities, number of symptoms, percentage of cures, delay in diagnosis, patient delay, provider delay, laboratory delay, and delay in treatment. Descriptive statistics were used for the variables of interest. Results: A total of 362 pulmonary TB cases were identified. The average time between the first symptom and reporting of data was 94 days. The mean time between symptom onset and laboratory diagnosis was 91 days. The average time from symptom onset to first consultation was 80 days. The time between diagnosis and treatment initiation was 5 days. Conclusions: Delays were significant between reporting of the first symptoms and diagnosis and significantly smaller from the time between notification and start of treatment. Control strategies should be implemented to diagnose cases through active screening, to avoid delays in diagnosis and treatment, and to reduce TB transmission.

SELECTION OF CITATIONS
SEARCH DETAIL
...