Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
ERJ Open Res ; 10(1)2024 Jan.
Article in English | MEDLINE | ID: mdl-38226069

ABSTRACT

Rescue of N1303K CFTR by highly effective modulator therapy (HEMT) is enabled by CF airway inflammation. These findings suggest that evaluation of HEMT for rare CFTR mutations must be performed under inflammatory conditions relevant to CF airways. https://bit.ly/3tTcoJE.

2.
Am J Respir Crit Care Med ; 209(4): 374-389, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38016030

ABSTRACT

Rationale: Non-cystic fibrosis bronchiectasis (NCFB) may originate in bronchiolar regions of the lung. Accordingly, there is a need to characterize the morphology and molecular characteristics of NCFB bronchioles. Objectives: Test the hypothesis that NCFB exhibits a major component of bronchiolar disease manifest by mucus plugging and ectasia. Methods: Morphologic criteria and region-specific epithelial gene expression, measured histologically and by RNA in situ hybridization and immunohistochemistry, identified proximal and distal bronchioles in excised NCFB lungs. RNA in situ hybridization and immunohistochemistry assessed bronchiolar mucus accumulation and mucin gene expression. CRISPR-Cas9-mediated IL-1R1 knockout in human bronchial epithelial cultures tested IL-1α and IL-1ß contributions to mucin production. Spatial transcriptional profiling characterized NCFB distal bronchiolar gene expression. Measurements and Main Results: Bronchiolar perimeters and lumen areas per section area were increased in proximal, but not distal, bronchioles in NCFB versus control lungs, suggesting proximal bronchiolectasis. In NCFB, mucus plugging was observed in ectatic proximal bronchioles and associated nonectatic distal bronchioles in sections with disease. MUC5AC and MUC5B mucins were upregulated in NCFB proximal bronchioles, whereas MUC5B was selectively upregulated in distal bronchioles. Bronchiolar mucus plugs were populated by IL-1ß-expressing macrophages. NCFB sterile sputum supernatants induced human bronchial epithelial MUC5B and MUC5AC expression that was >80% blocked by IL-1R1 ablation. Spatial transcriptional profiling identified upregulation of genes associated with secretory cells, hypoxia, interleukin pathways, and IL-1ß-producing macrophages in mucus plugs and downregulation of epithelial ciliogenesis genes. Conclusions: NCFB exhibits distinctive proximal and distal bronchiolar disease. Both bronchiolar regions exhibit bronchiolar secretory cell features and mucus plugging but differ in mucin gene regulation and ectasia.


Subject(s)
Bronchiectasis , Cystic Fibrosis , Humans , Bronchioles , Dilatation, Pathologic , Bronchiectasis/genetics , Mucins/metabolism , Interleukin-1beta , Fibrosis , RNA , Mucin 5AC/genetics
3.
Cells ; 12(22)2023 11 13.
Article in English | MEDLINE | ID: mdl-37998353

ABSTRACT

People with cystic fibrosis (pwCF) suffer from chronic and recurring bacterial lung infections that begin very early in life and contribute to progressive lung failure. CF is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, which encodes an ion channel important for maintaining the proper hydration of pulmonary surfaces. When CFTR function is ablated or impaired, airways develop thickened, adherent mucus that contributes to a vicious cycle of infection and inflammation. Therapeutics for pwCF, called CFTR modulators, target the CFTR defect directly, restoring airway surface hydration and mucociliary clearance. However, even with CFTR modulator therapy, bacterial infections persist. To develop a relevant model of diseased airway epithelium, we established a primary human airway epithelium culture system with persistent Pseudomonas aeruginosa infection. We used this model to examine the effects of CFTR modulators on CFTR maturation, CFTR function, and bacterial persistence. We found that the presence of P. aeruginosa increased CFTR mRNA, protein, and function. We also found that CFTR modulators caused a decrease in P. aeruginosa burden. These results demonstrate the importance of including live bacteria to accurately model the CF lung, and that understanding the effects of infection on CFTR rescue by CFTR modulators is critical to evaluating and optimizing drug therapies for all pwCF.


Subject(s)
Cystic Fibrosis , Pseudomonas Infections , Humans , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Coculture Techniques , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Lung/metabolism
4.
Int J Mol Sci ; 24(5)2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36902441

ABSTRACT

Cystic fibrosis transmembrane conductance regulator (CFTR) modulators, a new series of therapeutics that correct and potentiate some classes of mutations of the CFTR, have provided a great therapeutic advantage to people with cystic fibrosis (pwCF). The main hindrances of the present CFTR modulators are related to their limitations in reducing chronic lung bacterial infection and inflammation, the main causes of pulmonary tissue damage and progressive respiratory insufficiency, particularly in adults with CF. Here, the most debated issues of the pulmonary bacterial infection and inflammatory processes in pwCF are revisited. Special attention is given to the mechanisms favoring the bacterial infection of pwCF, the progressive adaptation of Pseudomonas aeruginosa and its interplay with Staphylococcus aureus, the cross-talk among bacteria, the bronchial epithelial cells and the phagocytes of the host immune defenses. The most recent findings of the effect of CFTR modulators on bacterial infection and the inflammatory process are also presented to provide critical hints towards the identification of relevant therapeutic targets to overcome the respiratory pathology of pwCF.


Subject(s)
Cystic Fibrosis , Staphylococcal Infections , Adult , Humans , Cystic Fibrosis/drug therapy , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Lung/pathology , Host-Pathogen Interactions , Pseudomonas aeruginosa/genetics
6.
Curr Opin Pharmacol ; 65: 102248, 2022 08.
Article in English | MEDLINE | ID: mdl-35689870

ABSTRACT

In the lungs, defective CFTR associated with cystic fibrosis (CF) represents the nidus for abnormal mucus clearance in the airways and consequently a progressive lung disease. Defective CFTR-mediated Cl- secretion results in altered mucus properties, including concentration, viscoelasticity, and the ratio of the two mucins, MUC5B and MUC5AC. In the past decades, therapies targeting the CF mucus defect, directly or indirectly, have been developed; nevertheless, better treatments to prevent the disease progression are still needed. This review summarizes the existing knowledge on the defective mucus in CF disease and highlights it as a barrier to the development of future inhaled genetic therapies. The use of new mucus-targeting treatments is also discussed, focusing on their potential role to halt the progress of CF lung disease.


Subject(s)
Cystic Fibrosis , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Humans , Lung , Mucus
7.
Curr Opin Pharmacol ; 65: 102258, 2022 08.
Article in English | MEDLINE | ID: mdl-35749907

ABSTRACT

Excessive and chronic airway inflammation associated with increased morbidity and mortality is a hallmark of cystic fibrosis (CF) airway disease. Previous studies underscored the role of endoplasmic reticulum (ER) signaling in CF airway inflammatory responses. In this review we discuss 1) how airway inflammation induces ER stress-triggered activation of the unfolded protein response and 2) the functional importance of the ER stress transducer inositol requiring enzyme 1α (IRE1α) in CF airway epithelial inflammatory responses. We also briefly review the current understanding of IRE1α activation and the development of small molecules aimed at modulating IRE1α kinase and RNase activities. Inhibition of IRE1α kinase and RNase may be considered as a novel therapeutic strategy to ameliorate the robust inflammatory status of CF airways.


Subject(s)
Cystic Fibrosis , Endoribonucleases , Cystic Fibrosis/metabolism , Endoplasmic Reticulum Stress , Endoribonucleases/metabolism , Humans , Inflammation/metabolism , Inositol , Protein Serine-Threonine Kinases , Ribonucleases/metabolism
8.
Nicotine Tob Res ; 24(3): 395-399, 2022 02 14.
Article in English | MEDLINE | ID: mdl-34519792

ABSTRACT

INTRODUCTION: Alveolar macrophages (AMs) are lung-resident immune cells that phagocytose inhaled particles and pathogens, and help coordinate the lung's immune response to infection. Little is known about the impact of chronic e-cigarette use (ie, vaping) on this important pulmonary cell type. Thus, we determined the effect of vaping on AM phenotype and gene expression. AIMS AND METHODS: We recruited never-smokers, smokers, and e-cigarette users (vapers) and performed research bronchoscopies to isolate AMs from bronchoalveolar lavage fluid samples and epithelial cells from bronchial brushings. We then performed morphological analyses and used the Nanostring platform to look for changes in gene expression. RESULTS: AMs obtained from smokers and vapers were phenotypically distinct from those obtained from nonsmokers, and from each other. Immunocytochemistry revealed that vapers AMs had significantly elevated inducible nitric oxide synthase (M1) expression and significantly reduced CD301a (M2) expression compared with nonsmokers or smokers. Vapers' AMs and bronchial epithelia exhibited unique changes in gene expression compared with nonsmokers or smokers. Moreover, vapers' AMs were the most affected of all groups and had 124 genes uniquely downregulated. Gene ontology analysis revealed that vapers and smokers had opposing changes in biological processes. CONCLUSIONS: These data indicate that vaping causes unique changes to AMs and bronchial epithelia compared with nonsmokers and smokers which may impact pulmonary host defense. IMPLICATIONS: These data indicate that normal "healthy" vapers have altered AMs and may be at risk of developing abnormal immune responses to inflammatory stimuli.


Subject(s)
Electronic Nicotine Delivery Systems , Tobacco Products , Vaping , Gene Expression , Humans , Macrophages, Alveolar , Vaping/adverse effects
9.
Cells ; 10(11)2021 11 22.
Article in English | MEDLINE | ID: mdl-34831482

ABSTRACT

Defective CFTR biogenesis and activity in cystic fibrosis airways leads to airway dehydration and impaired mucociliary clearance, resulting in chronic airway infection and inflammation. Most cystic fibrosis patients have at least one copy of the F508del CFTR mutation, which results in a protein retained in the endoplasmic reticulum and degraded by the proteosomal pathway. CFTR modulators, e.g., correctors, promote the transfer of F508del to the apical membrane, while potentiators increase CFTR activity. Corrector and potentiator double therapies modestly improve lung function, whereas triple therapies with two correctors and one potentiator indicate improved outcomes. Enhanced F508del rescue by CFTR modulators is achieved by exposing F508del/F508del primary cultures of human bronchial epithelia to relevant inflammatory stimuli, i.e., supernatant from mucopurulent material or bronchoalveolar lavage fluid from human cystic fibrosis airways. Inflammation enhances the biochemical and functional rescue of F508del by double or triple CFTR modulator therapy and overcomes abrogation of CFTR correction by chronic VX-770 treatment in vitro. Furthermore, the impact of inflammation on clinical outcomes linked to CFTR rescue has been recently suggested. This review discusses these data and possible mechanisms for airway inflammation-enhanced F508del rescue. Expanding the understanding of how airway inflammation improves CFTR rescue may benefit cystic fibrosis patients.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Inflammation/pathology , Lung/pathology , Animals , Cystic Fibrosis/pathology , Humans , Translational Research, Biomedical , Treatment Outcome
10.
Int J Mol Sci ; 22(6)2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33802742

ABSTRACT

New anti-inflammatory treatments are needed for CF airway disease. Studies have implicated the endoplasmic reticulum stress transducer inositol requiring enzyme 1α (IRE1α) in CF airway inflammation. The activation of IRE1α promotes activation of its cytoplasmic kinase and RNase, resulting in mRNA splicing of X-box binding protein-1 (XBP-1s), a transcription factor required for cytokine production. We tested whether IRE1α kinase and RNase inhibition decreases cytokine production induced by the exposure of primary cultures of homozygous F508del CF human bronchial epithelia (HBE) to supernatant of mucopurulent material (SMM) from CF airways. We evaluated whether IRE1α expression is increased in freshly isolated and native CF HBE, and couples with increased XBP-1s levels. A FRET assay confirmed binding of the IRE1α kinase and RNase inhibitor, KIRA6, to the IRE1α kinase. F508del HBE cultures were exposed to SMM with or without KIRA6, and we evaluated the mRNA levels of XBP-1s, IL-6, and IL-8, and the secretion of IL-6 and IL-8. IRE1α mRNA levels were up-regulated in freshly isolated CF vs. normal HBE and coupled to increased XBP-1s mRNA levels. SMM increased XBP-1s, IL-6, and IL-8 mRNA levels and up-regulated IL-6 and IL-8 secretion, and KIRA6 blunted these responses in a dose-dependent manner. Moreover, a triple combination of CFTR modulators currently used in the clinic had no effect on SMM-increased XBP-1s levels coupled with increased cytokine production in presence or absence of KIRA6. These findings indicate that IRE1α mediates cytokine production in CF airways. Small molecule IRE1α kinase inhibitors that allosterically reduce RNase-dependent XBP-1s may represent a new therapeutic strategy for CF airway inflammation.


Subject(s)
Cystic Fibrosis/drug therapy , Cystic Fibrosis/pathology , Endoribonucleases/metabolism , Inflammation/drug therapy , Inflammation/pathology , Lung/pathology , Molecular Targeted Therapy , Protein Serine-Threonine Kinases/metabolism , Cells, Cultured , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cytokines/biosynthesis , Endoribonucleases/genetics , Epithelium/drug effects , Epithelium/pathology , Humans , Imidazoles/chemistry , Imidazoles/pharmacology , Inflammation/genetics , Models, Biological , Naphthalenes/chemistry , Naphthalenes/pharmacology , Protein Serine-Threonine Kinases/genetics , Pyrazines/chemistry , Pyrazines/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Up-Regulation/drug effects , Up-Regulation/genetics , X-Box Binding Protein 1/metabolism
11.
Front Pharmacol ; 12: 628722, 2021.
Article in English | MEDLINE | ID: mdl-33859562

ABSTRACT

In cystic fibrosis (CF), defective biogenesis and activity of the cystic fibrosis transmembrane conductance regulator (CFTR) leads to airway dehydration and impaired mucociliary clearance, resulting in chronic airway infection and inflammation. The most common CFTR mutation, F508del, results in a processing defect in which the protein is retained in the endoplasmic reticulum and does not reach the apical surface. CFTR corrector compounds address this processing defect to promote mutant CFTR transfer to the apical membrane. When coupled with potentiators to increase CFTR channel activity, these drugs yield significant clinical benefits in CF patients carrying the F508del mutation. However, processing of CFTR and other proteins can be influenced by environmental factors such as inflammation, and the impact of airway inflammation on pharmacological activity of CFTR correctors is not established. The present study evaluated CFTR-rescuing therapies in inflamed CF airway epithelial cultures, utilizing models that mimic the inflammatory environment of CF airways. Primary bronchial epithelial cultures from F508del/F508del CF patients were inflamed by mucosal exposure to one of two inflammatory stimuli: 1) supernatant from mucopurulent material from CF airways with advanced lung disease, or 2) bronchoalveolar lavage fluid from pediatric CF patients. Cultures inflamed with either stimulus exhibited augmented F508del responses following therapy with correctors VX-809 or VX-661, and overcame the detrimental effects of chronic exposure to the CFTR potentiator VX-770. Remarkably, even the improved CFTR rescue responses resulting from a clinically effective triple therapy (VX-659/VX-661/VX-770) were enhanced by epithelial inflammation. Thus, the airway inflammatory milieu from late- and early-stage CF lung disease improves the efficacy of CFTR modulators, regardless of the combination therapy used. Our findings suggest that pre-clinical evaluation of CFTR corrector therapies should be performed under conditions mimicking the native inflammatory status of CF airways, and altering the inflammatory status of CF airways may change the efficacy of CFTR modulator therapies.

12.
Sci Adv ; 6(19): eaax9093, 2020 05.
Article in English | MEDLINE | ID: mdl-32494695

ABSTRACT

Mitochondria physically associate with the endoplasmic reticulum to coordinate interorganelle calcium transfer and regulate fundamental cellular processes, including inflammation. Deregulated endoplasmic reticulum-mitochondria cross-talk can occur in cystic fibrosis, contributing to hyperinflammation and disease progression. We demonstrate that Pseudomonas aeruginosa infection increases endoplasmic reticulum-mitochondria associations in cystic fibrosis bronchial cells by stabilizing VAPB-PTPIP51 (vesicle-associated membrane protein-associated protein B-protein tyrosine phosphatase interacting protein 51) tethers, affecting autophagy. Impaired autophagy induced mitochondrial unfolding protein response and NLRP3 inflammasome activation, contributing to hyperinflammation. The mechanism by which VAPB-PTPIP51 tethers regulate autophagy in cystic fibrosis involves calcium transfer via mitochondrial calcium uniporter. Mitochondrial calcium uniporter inhibition rectified autophagy and alleviated the inflammatory response in vitro and in vivo, resulting in a valid therapeutic strategy for cystic fibrosis pulmonary disease.


Subject(s)
Cystic Fibrosis , Pneumonia , Calcium/metabolism , Calcium Channels , Cystic Fibrosis/complications , Cystic Fibrosis/drug therapy , Humans , Mitochondrial Proteins/metabolism , Pneumonia/drug therapy , Pneumonia/etiology
16.
Am J Respir Crit Care Med ; 200(2): 220-234, 2019 07 15.
Article in English | MEDLINE | ID: mdl-30973754

ABSTRACT

Rationale: The goal was to connect elements of idiopathic pulmonary fibrosis (IPF) pathogenesis, including chronic endoplasmic reticulum stress in respiratory epithelia associated with injury/inflammation and remodeling, distal airway mucus obstruction and honeycomb cyst formation with accumulation of MUC5B (mucin 5B), and associations between IPF risk and polymorphisms in the MUC5B promoter. Objectives: To test whether the endoplasmic reticulum (ER) stress sensor protein ERN2 (ER-to-nucleus signaling 2) and its downstream effector, the spliced form of XBP1S (X-box-binding protein 1), regulate MUC5B expression and differentially activate the MUC5B promoter variant in respiratory epithelia. Methods: Primary human airway epithelial (HAE) cells, transgenic mouse models, human IPF lung tissues, and cell lines expressing XBP1S and MUC5B promoters were used to explore relationships between the ERN2/XBP1S pathway and MUC5B. An inhibitor of the pathway, KIRA6, and XBP1 CRISPR-Cas9 were used in HAE cells to explore therapeutic potential. Measurements and Main Results: ERN2 regulated MUC5B and MUC5AC mRNAs. Downstream XBP1S selectively promoted MUC5B expression in vitro and in distal murine airway epithelia in vivo. XBP1S bound to the proximal region of the MUC5B promoter and differentially upregulated MUC5B expression in the context of the MUC5B promoter rs35705950 variant. High levels of ERN2 and XBP1S were associated with excessive MUC5B mRNAs in distal airways of human IPF lungs. Cytokine-induced MUC5B expression in HAE cells was inhibited by KIRA6 and XBP1 CRISPR-Cas9. Conclusions: A positive feedback bistable ERN2-XBP1S pathway regulates MUC5B-dominated mucus obstruction in IPF, providing an unfolded protein response-dependent mechanism linking the MUC5B promoter rs35705950 polymorphism with IPF pathogenesis. Inhibiting ERN2-dependent pathways/elements may provide a therapeutic option for IPF.


Subject(s)
Endoribonucleases/genetics , Idiopathic Pulmonary Fibrosis/genetics , Membrane Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Respiratory Mucosa/metabolism , X-Box Binding Protein 1/genetics , Animals , CRISPR-Cas Systems , Cell Line , Endoplasmic Reticulum Stress/genetics , Endoribonucleases/metabolism , Gene Expression Regulation , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Membrane Proteins/metabolism , Mice , Mice, Transgenic , Polymorphism, Genetic , Primary Cell Culture , Promoter Regions, Genetic , Protein Serine-Threonine Kinases/metabolism , X-Box Binding Protein 1/metabolism
18.
Eur Respir J ; 52(4)2018 10.
Article in English | MEDLINE | ID: mdl-30190268

ABSTRACT

The multi-organ disease cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane regulator gene (CFTR) that lead to diminished transepithelial anion transport. CF lungs are characterised by airway surface liquid (ASL) dehydration, chronic infection/inflammation and neutrophilia. Dysfunctional CFTR may upregulate the epithelial Na+ channel (ENaC), further exacerbating dehydration. We previously demonstrated that short palate lung and nasal epithelial clone 1 (SPLUNC1) negatively regulates ENaC in normal airway epithelia.Here, we used pulmonary tissue samples, sputum and human bronchial epithelial cells (HBECs) to determine whether SPLUNC1 could regulate ENaC in a CF-like environment.We found reduced endogenous SPLUNC1 in CF secretions, and rapid degradation of recombinant SPLUNC1 (rSPLUNC1) by CF secretions. Normal sputum, containing SPLUNC1 and SPLUNC1-derived peptides, inhibited ENaC in both normal and CF HBECs. Conversely, CF sputum activated ENaC, and rSPLUNC1 could not reverse this phenomenon. Additionally, we observed upregulation of ENaC protein levels in human CF bronchi. Unlike SPLUNC1, the novel SPLUNC1-derived peptide SPX-101 resisted protease degradation, bound apically to HBECs, inhibited ENaC and prevented ASL dehydration following extended pre-incubation with CF sputum.Our data indicate that CF mucosal secretions drive ASL hyperabsorption and that protease-resistant peptides, e.g. SPX-101, can reverse this effect to rehydrate CF ASL.


Subject(s)
Cystic Fibrosis/metabolism , Dehydration/pathology , Epithelial Cells/metabolism , Glycoproteins/metabolism , Phosphoproteins/metabolism , Cells, Cultured , Epithelial Sodium Channels/metabolism , Glycoproteins/genetics , Humans , Ion Transport , Lung/metabolism , Phosphoproteins/genetics , Respiratory Mucosa/metabolism
19.
Am J Respir Cell Mol Biol ; 59(4): 428-436, 2018 10.
Article in English | MEDLINE | ID: mdl-29668297

ABSTRACT

The lungs of patients with cystic fibrosis (CF) are characterized by an exaggerated inflammation driven by secretion of IL-8 from bronchial epithelial cells and worsened by Pseudomonas aeruginosa infection. To identify novel antiinflammatory molecular targets, we previously performed a genetic study of 135 genes of the immune response, which identified the c.2534C>T (p.S845L) variant of phospholipase C-ß3 (PLCB3) as being significantly associated with mild progression of pulmonary disease. Silencing PLCB3 revealed that it potentiates the Toll-like receptor's inflammatory signaling cascade originating from CF bronchial epithelial cells. In the present study, we investigated the role of the PLCB3-S845L variant together with two synthetic mutants paradigmatic of impaired catalytic activity or lacking functional activation in CF bronchial epithelial cells. In experiments in which cells were exposed to P. aeruginosa, the supernatant of mucopurulent material from the airways of patients with CF or different agonists revealed that PLCB3-S845L has defects of 1) agonist-induced Ca2+ release from endoplasmic reticulum and rise of Ca2+ concentration, 2) activation of conventional protein kinase C isoform ß, and 3) induction of IL-8 release. These results, besides identifying S845L as a loss-of-function variant, strengthen the importance of targeting PLCB3 to mitigate the CF inflammatory response in bronchial epithelial cells without blunting the immune response.


Subject(s)
Cystic Fibrosis/metabolism , Cystic Fibrosis/pathology , Interleukin-8/metabolism , Phospholipase C beta/deficiency , Pseudomonas aeruginosa/physiology , Bronchi/pathology , Calcium Signaling , Cell Line , Computer Simulation , Humans , Mucus/metabolism , Mutation/genetics , Phospholipase C beta/chemistry , Phospholipase C beta/genetics , Phospholipase C beta/metabolism , Serine/metabolism , Structure-Activity Relationship
20.
Am J Respir Crit Care Med ; 197(4): 481-491, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29099608

ABSTRACT

RATIONALE: Cystic fibrosis (CF) airways disease produces a mucoobstructive lung phenotype characterized by airways mucus plugging, epithelial mucous cell metaplasia/hyperplasia, chronic infection, and inflammation. Simultaneous biochemical and functional in vivo studies of mucin synthesis and secretion from CF airways are not available. In vitro translational models may quantitate differential CF versus normal mucin and fluid secretory responses to infectious/inflammatory stimuli. OBJECTIVES: We tested the hypothesis that CF airways exhibit defective epithelial fluid, but not mucin, secretory responses to bacterial/inflammatory host products. METHODS: Well-differentiated primary human bronchial epithelial cultures were exposed to supernatant from mucopurulent material (SMM) from human CF airways as a test of bacterial/inflammatory host product stimulus. Human bronchial epithelia (HBE) with normal CF transmembrane conductance regulator function were compared with ΔF508/ΔF508 CF HBE. MEASUREMENTS AND MAIN RESULTS: Acute (up to 60 min) SMM exposure promoted mucin secretion, but mucins were degraded by the proteolytic enzymes present in SMM. Chronic SMM exposure induced upregulation of mucin synthesis and storage and generated absolute increases in basal and stimulated mucin release in normal and CF cultures. These responses were similar in normal and CF cultures. In contrast, SMM produced a coordinated CF transmembrane conductance regulator-mediated Cl- secretory response in normal HBE, but not in CF HBE. The absence of the fluid secretory response in CF produced quantitatively more dehydrated mucus. CONCLUSIONS: Our study reveals the interplay between regulation of mucin and fluid secretion rates in inflamed versus noninflamed conditions and why a hyperconcentrated mucus is produced in CF airways.


Subject(s)
Cystic Fibrosis/metabolism , Fluid Therapy , Lung/metabolism , Mucins/biosynthesis , Respiratory Mucosa/metabolism , Cell Culture Techniques , Cystic Fibrosis/pathology , Enzyme-Linked Immunosorbent Assay , Epithelium/metabolism , Epithelium/pathology , Humans , Lung/pathology , Mucins/metabolism , Polymerase Chain Reaction , Respiratory Mucosa/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...