Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Language
Publication year range
1.
J Anim Physiol Anim Nutr (Berl) ; 107(4): 1028-1034, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36415910

ABSTRACT

Milk fat depression (MFD) syndrome has been associated with the antilipogenic effects of trans-10 fatty acids (FA), such as t10, c12-CLA (CLA) and t10-18:1 (T10). However, these FA alone cannot completely explain the changes in milk fat in small ruminants. Thus, the aim of this study was to use multiple regression analysis to evaluate other FA that may be related to shifts in milk fat, as well as to improve model accuracy when different milk FA are used as covariates in the models. Previously published data were used in multiple regression analysis for goats (n = 106) and ewes (n = 68). Body weight (BW), vaccenic acid (t11-18:1), both trans-10 FA and the major milk FA were tested as covariates to model four response variables associated with MFD: fat concentration (FC), percentage change in milk fat concentration (CFC; %), fat yield (FY; g/d) and percentage change in milk fat yield (CFY; %). All four multiple regression models were significant for both species. When compared with simple regression models, all multiple regression models improved accuracy when estimating MFD. The improvements in model accuracy (lower RMSE) for FC, CFC, FY and CFY were 60.6%, 43.3%, 35.6% and 44.4% for ewes, and 52.1%, 60.1%, 33.6% and 14.9% for goats respectively. Linolenic acid and t11-18:1 were covariates in all models for goats, and palmitic acid and CLA were covariates in all ewe models. These FA should be investigated regarding their direct effect on gene expression associated with milk fat metabolism in the mammary gland of small ruminants. Multiple regression analysis is the most robust approach to account for the variation of milk fat and yield in goats and ewes.


Subject(s)
Linoleic Acids, Conjugated , Milk , Sheep , Animals , Female , Milk/chemistry , Fatty Acids/metabolism , Dietary Supplements/analysis , Diet/veterinary , Lactation , Goats/physiology , Regression Analysis , Linoleic Acids, Conjugated/pharmacology
2.
Anim Biotechnol ; 34(7): 3162-3164, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36322697

ABSTRACT

The kappa (CSN3) and beta-casein (CSN2) genes are intensively genotyped in dairy cattle for selection purposes. This information is also generated and disseminated for Zebu breeds adapted to tropical climates. The objective of this work was to gather information on the genotypes for the CSN3 and CSN2 genes in three breeds (Gyr, Guzerat and Sindhi), and to verify the genotypic frequencies in the populations. The genotype AA and allele A frequencies are high for the CSN3 gene, without changes in values over the years, possibly indicating a small gene participation in traits under selection. In addition, the A2A2 frequencies are high for the CSN2 gene (<∼0.80). It is recommended to verify the association and contribution of CSN3 genotypes in productive traits for these breeds. The potential of A2 milk production by these genetic groups is also confirmed.


Subject(s)
Caseins , Milk , Cattle/genetics , Animals , Caseins/genetics , Alleles , Genotype , Phenotype
3.
PLoS One ; 17(5): e0267409, 2022.
Article in English | MEDLINE | ID: mdl-35500007

ABSTRACT

The objective of this study was to investigate the nutritional quality of bovine colostrum and whey mixtures. Five whey with bovine colostrum formulations were prepared (90:10; 80:20; 70:30; 60:40 and 50:50 whey:colostrum v:v) to be subjected to low-temperature pasteurization (63°C to 65°C for 30 minutes) and freeze-drying. The samples underwent chemical composition characterization, fatty acid profile analysis, determination of contamination by Enterobacteriaceae, pH, and Dornic acidity measurements before and after vat pasteurization. The amount of protein, fat, total solids, defatted dry extract, Brix and density increased as the bovine colostrum concentration increased. The level of saturated fatty acids and the thrombogenicity and atherogenicity indices reduced, while unsaturated fatty acids increased as the level of added bovine colostrum increased. The low-temperature pasteurization of the formulations was possible and effective, eliminating contamination by Enterobacteriaceae in the samples. Mixing bovine colostrum and whey reduced the colostrum viscosity, allowing a successful pasteurization procedure. Due to colostrum composition, the formulations yielded a higher nutritional value when compared to whey alone. The parameters applied in the formulation of mixtures of bovine colostrum and whey resulted in valuable ingredients for preparing novel dairy products.


Subject(s)
Colostrum , Whey , Animals , Cattle , Colostrum/chemistry , Fatty Acids/metabolism , Female , Pregnancy , Viscosity , Whey/chemistry , Whey Proteins/metabolism
4.
J Dairy Sci ; 105(1): 188-200, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34635357

ABSTRACT

Time spent ruminating is affected by diet and affects the rumen environment. The objective of the current study was to conduct a meta-regression to characterize the variation in rumination time and its relationship with milk and milk fat yields and variables mechanistically associated with milk fat synthesis, including rumen pH and total-tract digestibility. The analysis included 130 journal articles published between 1986 and 2018 that reported 479 treatment means from lactating Holsteins cows during established lactation. Milk yield averaged 34.3 kg/d (range 14.2-52.1 kg/d), milk fat averaged 3.47% (range 2.20-4.60%), and rumen pH averaged 6.1 (range 5.3-7.0). Rumination observation systems were categorized into 6 groups, but there was little difference in average rumination time among systems. The total time spent ruminating averaged 444 min/d (range 151-638 d) and occurred in 13.8 bouts/d (range 7.8-17.4 bouts/d) that averaged 32.7 min (range 20.0-48.1 min). Bivariate regressions were modeled to include the random effect of study, and correlations were evaluated through the partial R2 that excluded variation accounted for by the random effect. Rumination time was quadratically increased with increasing milk fat yield (partial R2 = 0.27) and milk fat percent (partial R2 = 0.17). Rumination was also increased with increasing milk yield, dry matter intake, and rumen pH, and was quadratically related to dietary neutral detergent fiber (NDF) and total-tract NDF digestibility (partial R2 = 0.10-0.27). Similar relationships were observed for rumination per unit of dry matter and NDF intake. The best-fit multivariate model predicting total rumination time included milk yield, milk fat yield, and concentration and accounted for 37% of the variation. Total-tract digestibility was available for 217 treatment means; when included in the model, the partial R2 increased to 0.41. Last, principal component analysis was conducted to explore the relationship among variables. The first 2 principal components in the broad analyses explained 36.7% of the 39 variables evaluated, which included rumination bouts and time spent ruminating. In conclusion, rumination time was related to milk fat across a large number of studies, although it explained only a limited amount of the variation in milk fat.


Subject(s)
Milk , Rumen , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Dietary Fiber/metabolism , Digestion , Female , Fermentation , Hydrogen-Ion Concentration , Lactation , Rumen/metabolism
5.
Br J Nutr ; : 1-7, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34704550

ABSTRACT

The objective of this study was to test the hypothesis that stearic acid (SA) supplementation increases milk fat content and overcomes the antilipogenic effects of trans-10, cis-12 conjugated linoleic acid (CLA) in lactating ewes. Twenty-eight Lacaune ewes (36 (sd 2) days in lactation; 70·5 (sd) 9·6 kg of body weight), producing 1·8 (sd 0·4) kg of milk/d, were used in a completely randomised design (seven ewes/treatment) for 21 d. The treatments were: (1) Control; (2) CLA (6·4 g/d of trans-10, cis-12 CLA); (3) SA (28 g/d of SA) and (4) SA in association with trans-10, cis-12 CLA (CLASA; 6·4 g/d of trans-10, cis-12 CLA plus 28 g/d of SA). All data were analysed using a mixed model that included the fixed effect of treatment and the random effect of ewe. SA did not alter milk fat content and yield relative to Control (91·9 v. 91·2 (sd 4·1) g/d). CLASA was not able to overcome the reduction in fat content and fat yield induced by CLA (75 v. 82 (sd 0·14) g/d). SA increased the relative abundance of CD36, fatty acid-binding protein 4 (FABP4) and PPAR-γ mRNA by 140, 112 and 68 % compared with CLASA. SA also reduced the relative abundance of acetyl-CoA carboxylase α promoter II and stearoyl-CoA desaturase (SCD) when compared with Control (45 and 39 %). Compared with CLA, CLASA treatment had no effect on the mRNA abundance of fatty acid synthase, lipoprotein lipase, CD36, SCD, FABP4, acylglycerolphosphate acyltransferase 6, sterol regulatory element-binding protein 1 and PPAR-γ. In conclusion, SA supplementation did not increase milk fat synthesis and did not overcome the CLA-induced milk fat depression when associated with trans-10, cis-12 CLA.

6.
Anim Biosci ; 34(6): 1014-1021, 2021 Jun.
Article in English | MEDLINE | ID: mdl-32898951

ABSTRACT

OBJECTIVE: The aim of this study was to determine the effect of dietary ground licuri on lamb performance. METHODS: Forty male lambs were used in a completely randomized design to test the effects of 0, 5, 10, and 15 g/kg of ground licuri added to diets. The trial lasted for 75 days. Intake, digestibility, physically effective neutral detergent fiber, and chewing activity were estimated. Blood samples were taken on day 45 to determine the concentrations of glucose, urea, nonesterified fatty acids, and triglycerides. Average daily gain (ADG) were determined on the last day of the experimental trial. RESULTS: Licuri inclusion markedly increased dietary neutral detergent fiber and ether extract (EE) content, but it decreased dry matter (DM) intake. However, the intake and digestibility of EE linearly increased. The ADG decreased linearly (p<0.05) with licuri inclusion. Licuri had no effect (p>0.05) on the concentrations of blood metabolites; however, blood urea increased (p<0.05), while serum glucose decreased (p<0.05). CONCLUSION: The physically effective fiber of ground licuri is similar to Tyfton hay and licuri inclusion decreases lamb performance due to a decreased in DM intake.

7.
Rev. colomb. cienc. pecu ; 31(3): 213-222, jul.-set. 2018. tab, graf
Article in English | LILACS | ID: biblio-978261

ABSTRACT

Abstract Background: Dietary linoleic (LA) and alpha-linolenic (LN) acids are extensively isomerized and hydrogenated by rumen microbes, and this activity can further contribute to the fatty acid profile of ruminant- derived food products. Objective: To evaluate the effects of LA:LN ratio in lipid supplements on the rumen biohydrogenation kinetics of LA and LN, as well as on the trans-vaccenic acid (VA) production, using an in vitro system. Methods: Rumen fluid was collected from a fistulated steer, diluted with incubation buffer, and then incubated with 500 mg of kikuyu grass (Cenchrus clandestinus) supplemented with 16.3 mg of different LA:LN mixtures (100:0, 75:25, 50:50, 25:75 or 0:100). Incubations were performed in triplicate for a period of 0, 2, 4, 6, 8 or 16 hours. Differences between treatments were evaluated in a completely randomized design. Alternatively, computational chemistry was used to determine the changes in the Gibbs free energy (ΔGrxn) at 39 °C for the principal steps of LA and LN ruminal biohydrogenation. Results: Partial replacement of LA by LN decreased the VA concentration and its accumulation rate; it also increased the stearic acid concentration and the rates of transfer from LA to conjugated linoleic acid (CLA), and from CLA to VA. The conversion from CLA to VA (ΔGrxn = -2.65 kJ/mol) was more spontaneous than that from trans-11, cis-15 octadecadienoic acid (TA) to VA (ΔGrxn = -0.29 kJ/mol). Conclusion: The LA:LN ratio in lipids can modulate LA and LN biohydrogenation (BH) kinetics, as well as the VA production in the rumen.


Resumen Antecedentes: los ácidos linoleico (LA) y alfa-linolénico (LN) de la dieta son extensivamente isomerizados y biohidrogenados por los microorganismos ruminales, lo cual puede contribuir al perfil de ácidos grasos de los productos derivados de rumiantes. Objetivo: evaluar el efecto de la relación LA:LN en suplementos lipídicos sobre la cinética de biohidrogenación ruminal del LA y LN, como también sobre la producción del ácido trans-vaccénico (VA), usando un sistema in vitro. Métodos: se colectó fluido ruminal de un toro fistulado, el cual fue diluido con buffer de incubación y posteriormente incubado con 500 mg de pasto kikuyo (Cenchrus clandestinus) suplementado con 16,3 mg de diferentes mezclas de LA:LN (100:0, 75:25, 50:50, 25:75, o 0:100). Las incubaciones fueron desarrolladas en triplicado durante 0, 2, 4, 6, 8 o 16 horas. Diferencias entre tratamientos fueron evaluadas mediante un modelo completamente al azar. Alternativamente, se determinaron los cambios en energía libre de Gibbs ( Δ Grxn) a 39 °C para los pasos principales de la biohidrogenación del LA y LN, usando química computacional. Resultados: la sustitución parcial de LA por LN disminuyó la concentración de VA y su tasa de acumulación, como también incrementó la concentración de ácido esteárico y las tasas de transferencia de LA para ácido linoleico conjugado (CLA) y de CLA para VA. La conversión de CLA para VA ( Δ Grxn = -2,65 kJ/mol) fue más espontánea que la conversión del ácido trans-11, cis-15 octadecadienóico (TA) para VA ( Δ Grxn = -0,29 kJ/mol). Conclusiones: la relación LA:LN en lípidos puede modular la cinética de biohidrogenación (BH) del LA y LN y la producción de VA en el rumen.


Resumo Antecedêntes: o ácido linoleico (LA) e alfa-linolênico (LN) da dieta, são extensivamente isomerizados e biohidrogenados pelos microorganismos do rúmen, o que pode contribuir ao perfil de ácidos graxos dos produtos derivados de ruminantes. Objetivo: avaliar o efeito da relação LA:LN em suplementos lipídicos sobre a cinética de biohidrogenação ruminal do LA e LN como também sobre a produção do ácido trans- vaccênico (VA), utilizando um sistema in vitro. Métodos: coletou-se fluido ruminal de um novilho fistulado, o qual foi diluído com tampão de incubação e, em seguida, incubado com 500 mg de pasto kikuyu (Cenchrus clandestinus) suplementado com 16,3 mg de diferentes misturas LA:LN (100:0, 75:25 , 50:50, 25:75 ou 0:100). As incubações foram desenvolvidas em triplicata, durante 0, 2, 4, 6, 8 ou 16 horas. Diferenças entre tratamentos foram avaliadas utilizando-se um delineamento inteiramente casualizado. Alternativamente, foram determinadas as mudanças em energia livre de Gibbs ( Δ Grxn) a 39 °C para as principais etapas da biohidrogenação do LA e LN, utilizando-se química computacional. Resultados: a substituição parcial de LA por LN diminuiu a concentração de VA e sua taxa de acumulação, como também aumentou a concentração de ácido esteárico e as taxas de transferência do LA para o ácido linoleico conjugado (CLA) e do CLA para VA. A conversão do CLA para VA ( Δ Grxn = -2,65 kJ/ mol) foi mais espontânea que a conversão do ácido trans-11, cis-15 octadecadienóico (TA) para VA ( Δ Grxn = -0,29 kJ/mol). Conclusões: a relação LA:LN em lipídeos pode modular a cinética de biohidrogenação (BH) do LA e LN e a produção de VA no rúmen.

8.
J Food Sci ; 83(5): 1366-1372, 2018 May.
Article in English | MEDLINE | ID: mdl-29660800

ABSTRACT

This study was conducted to test the effect of dietary tannin on the fatty acid profile and sensory attributes of meat from Nellore steers. Thirty-two Nellore bull male were distributed in a completely randomized design and fed diets with condensed tannin extract as follows: 0, 10, 30, and 50 g/kg total DM basis. The physicochemical composition of the meat, lipid oxidation, fatty acid profile, flavor, tenderness, and overall acceptance were evaluated. There was a linear decrease (P ≤ 0.05) on lipid content, tenderness, cooking weight loss, myristic, palmitic, and oleic acids in meat as tannin increased in the diets. The total saturated and monounsaturated fatty acids, the atherogenicity index decreased. However, a linear increase (P ≤ 0.05) was observed for linoleic, linolenic, arachidonic, eicosapentaenoic, and docosapentaenoic acids. The physicochemical characteristic of the meat, such as moisture, ash, and protein contents, water retention capacity, final pH, Warner-Bratzler shear force, collagen, and color indexes (lightness, redness, yellowness, and chrome) did not change with dietary tannin. Also, CLA, n-6:n-3 ratio, Δ9 -desaturase, and elongase activity were not different among diets. In conclusion, condensed tannin linearly increases unsaturated fatty acids and decreases the atherogenicity index of meat; thus, it can be recommended at the highest level (50 g/kg DM) in the diet of Nellore steers. PRACTICAL APPLICATION: Agriculture byproducts plays an important part in the diet of ruminant animals and consequently on food chain and has implications for the composition and quality of the livestock products (milk, meat, and eggs) that people consume. Feeding tannin to steers increases the amount of unsaturated fatty acids and meat tenderness, with a concomitant reduction on saturated fatty acids and the atherogenicity index in meat. Thus, we recommend adding tannin to steer diets to reduce the risk factors for cardiovascular diseases in red meat for human consumption.


Subject(s)
Chemical Phenomena , Fatty Acids/analysis , Proanthocyanidins/administration & dosage , Red Meat/analysis , Adult , Animal Feed/analysis , Animals , Cattle , Color , Consumer Behavior , Dairy Products/analysis , Diet/veterinary , Female , Food Analysis , Food Quality , Food Safety , Humans , Male , Middle Aged , Proanthocyanidins/analysis , Risk Factors , Taste , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...