Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Mater Res B Appl Biomater ; 105(7): 1938-1949, 2017 10.
Article in English | MEDLINE | ID: mdl-27292445

ABSTRACT

The present work demonstrated an efficient cutaneous wound healing using Bixin-loaded polycaprolactone (PCL) nanofibers as a controlled delivery system. The influence of Bixin (Bix) content on PCL nanofiber, Bix-PCL1(2.5% w/w bix) and Bix-PCL2 (12.5% w/w bix) formation was investigated using electrical conductivity, attenuated total reflectance infrared spectroscopy, X-ray diffraction, thermal analysis, and scanning electronic microscopy. The results showed that a greater bixin concentration resulted in higher polymeric solution electrical conductivity. Moreover, higher polymeric solution electrical conductivity provides lower nanofibers in terms of average diameter than pure PCL nanofibers. In vitro release was largely governed by a diffusion-controlled mechanism. The initial Bixin release domain showed a burst release over the first 10 hours where approximately 30% and 40% of Bixin was released from Bix-PCL1 and Bix-PCL2 nanofibers, respectively. The second kinetic domain was comprised of a continuous and slow Bixin release that led to almost 100% of the Bixin being released within 14 days. The results on excisional wound model in induced diabetic mice indicated that the low concentration of Bixin released from loaded Bix-PCL nanofibers maintain the biological activity of Bixin and is efficient in accelerating the wound healing as well as in reducing the scar tissue area compared with pure PCL nanofibers. Therefore, soft material Bixin-loaded PCL nanofibers are a promising candidate for use in wound dressing. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1938-1949, 2017.


Subject(s)
Carotenoids , Diabetes Mellitus, Experimental/drug therapy , Nanofibers , Skin/injuries , Wound Healing/drug effects , 3T3-L1 Cells , Animals , Carotenoids/chemistry , Carotenoids/pharmacology , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Male , Mice , Nanofibers/chemistry , Nanofibers/therapeutic use , Polyesters/chemistry , Polyesters/pharmacology , Skin/metabolism , Skin/pathology
2.
Talanta ; 152: 498-503, 2016 May 15.
Article in English | MEDLINE | ID: mdl-26992547

ABSTRACT

The use of electric fields as additional driving forces in sample preparation techniques is an innovative approach that is environmentally friendly, straightforward, and able to overcome several limitations of conventional sample preparation procedures. In this work, the advantages of electric field-assisted solid phase extraction (E-SPE) using syringe-type cartridges were demonstrated for the extraction of four fluoroquinolones (FQs) in their anionic forms. The FQs were extracted from eggs and subsequently determined by UHPLC-MS/MS. The use of electric fields during the washing and final elution steps resulted in a significant improvement of the extraction efficiencies for almost all FQs when compared to conventional SPE. Intra- and inter-day assays showed coefficients of variation below 10%. The better cleanup also resulted in the appearance of less precipitated matter in the final eluate, as well as reduced matrix effects. The results showed that the electrophoretic forces derived from electric fields are a promising way of significantly increasing the extraction efficiency of ionic analytes, while minimizing matrix effects associated with complex samples.


Subject(s)
Eggs/analysis , Electricity , Fluoroquinolones/isolation & purification , Solid Phase Extraction/methods , Chromatography, High Pressure Liquid , Fluoroquinolones/analysis , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...