Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Struct Biol X ; 7: 100084, 2023.
Article in English | MEDLINE | ID: mdl-36660365

ABSTRACT

The Bacteroides thetaiotaomicron has developed a consortium of enzymes capable of overcoming steric constraints and degrading, in a sequential manner, the complex rhamnogalacturonan II (RG-II) polysaccharide. BT0996 protein acts in the initial stages of the RG-II depolymerisation, where its two catalytic modules remove the terminal monosaccharides from RG-II side chains A and B. BT0996 is modular and has three putative carbohydrate-binding modules (CBMs) for which the roles in the RG-II degradation are unknown. Here, we present the characterisation of the module at the C-terminal domain, which we designated BT0996-C. The high-resolution structure obtained by X-ray crystallography reveals that the protein displays a typical ß-sandwich fold with structural similarity to CBMs assigned to families 6 and 35. The distinctive features are: 1) the presence of several charged residues at the BT0996-C surface creating a large, broad positive lysine-rich patch that encompasses the putative binding site; and 2) the absence of the highly conserved binding-site signatures observed in CBMs from families 6 and 35, such as region A tryptophan and region C asparagine. These findings hint at a binding mode of BT0996-C not yet observed in its homologues. In line with this, carbohydrate microarrays and microscale thermophoresis show the ability of BT0996-C to bind α1-4-linked polygalacturonic acid, and that electrostatic interactions are essential for the recognition of the anionic polysaccharide. The results support the hypothesis that BT0996-C may have evolved to potentiate the action of BT0996 catalytic modules on the complex structure of RG-II by binding to the polygalacturonic acid backbone sequence.

2.
FEBS J ; 287(13): 2723-2743, 2020 07.
Article in English | MEDLINE | ID: mdl-31794092

ABSTRACT

Understanding the specific molecular interactions between proteins and ß1,3-1,4-mixed-linked d-glucans is fundamental to harvest the full biological and biotechnological potential of these carbohydrates and of proteins that specifically recognize them. The family 11 carbohydrate-binding module from Clostridium thermocellum (CtCBM11) is known for its binding preference for ß1,3-1,4-mixed-linked over ß1,4-linked glucans. Despite the growing industrial interest of this protein for the biotransformation of lignocellulosic biomass, the molecular determinants of its ligand specificity are not well defined. In this report, a combined approach of methodologies was used to unravel, at a molecular level, the ligand recognition of CtCBM11. The analysis of the interaction by carbohydrate microarrays and NMR and the crystal structures of CtCBM11 bound to ß1,3-1,4-linked glucose oligosaccharides showed that both the chain length and the position of the ß1,3-linkage are important for recognition, and identified the tetrasaccharide Glcß1,4Glcß1,4Glcß1,3Glc sequence as a minimum epitope required for binding. The structural data, along with site-directed mutagenesis and ITC studies, demonstrated the specificity of CtCBM11 for the twisted conformation of ß1,3-1,4-mixed-linked glucans. This is mediated by a conformation-selection mechanism of the ligand in the binding cleft through CH-π stacking and a hydrogen bonding network, which is dependent not only on ligand chain length, but also on the presence of a ß1,3-linkage at the reducing end and at specific positions along the ß1,4-linked glucan chain. The understanding of the detailed mechanism by which CtCBM11 can distinguish between linear and mixed-linked ß-glucans strengthens its exploitation for the design of new biomolecules with improved capabilities and applications in health and agriculture. DATABASE: Structural data are available in the Protein Data Bank under the accession codes 6R3M and 6R31.


Subject(s)
Bacterial Proteins/metabolism , Clostridium thermocellum/metabolism , Glucans/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Binding Sites , Crystallography, X-Ray , Glucans/chemistry , Models, Molecular , Protein Binding , Protein Conformation , Sequence Homology , Substrate Specificity
3.
Appl Plant Sci ; 1(9)2013 Sep.
Article in English | MEDLINE | ID: mdl-25202582

ABSTRACT

PREMISE OF THE STUDY: Three species of the mangrove tree genus Rhizophora are found in the New World and along the west coast of Africa. Of these, R. mangle is the most abundant and has a complex interbreeding relationship with the sympatric R. racemosa and R. harrisonii. The development of additional microsatellite markers would permit paternity analyses and investigation of the hybrid origin of these species. • METHODS AND RESULTS: Using an enriched library method, via hybridization with biotinylated oligonucleotides complementary to repetitive poly AG/TC, primers for 11 microsatellite markers of R. mangle were developed and characterized in populations in Pará and São Paulo (Brazil) and Florida (USA). Ten of these markers were transferable to R. racemosa and R. harrisonii. • CONCLUSIONS: The microsatellite markers presented here will be useful in studies of contemporary and historical gene flow between American and West African Rhizophora species.

SELECTION OF CITATIONS
SEARCH DETAIL
...