Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Sci Eng C Mater Biol Appl ; 88: 148-156, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29636130

ABSTRACT

The influence of functionalized multi-walled carbon nanotubes (fMWCNT) in the presence of 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM]PF6) in different ratios was investigated on the acetaminophen (ACOP) electrochemical determination. The electrochemical behavior of the ACOP exhibited a pair of well-defined redox peaks, suggesting that the reversibility of ACOP was significantly improved in comparison to irreversible oxidation peak on bare GCE. The redox process was controlled by adsorption, involves two electrons and the value of apparent rate constant (ks) was equal to 14.7 s-1 ±â€¯3.6 s-1. The analytical curves were obtained for concentrations of ACOP ranging from 0.3 to 3.0 µmol L-1. The values of the detection limit were calculated from SWV and found to be 6.73 × 10-8 mol L-1. The proposed electrochemical sensor exhibited good stability and reproducibility and was applied for ACOP determination in tablets (Tylenol® and Tylenol®DC) with satisfactory results.


Subject(s)
Acetaminophen/analysis , Electrochemical Techniques/methods , Imidazoles/chemistry , Nanotubes, Carbon/chemistry
2.
Anal Biochem ; 413(2): 148-56, 2011 Jun 15.
Article in English | MEDLINE | ID: mdl-21356193

ABSTRACT

The electrochemical reduction behavior of dexamethasone at a hanging mercury drop electrode was investigated by cyclic and square-wave adsorptive voltammetries in a Britton-Robinson buffer at pH 2.0. The optimized experimental conditions consisted of a pulse potential frequency of 100 s(-1), a pulse amplitude of 15 mV, and a potential step height of 2 mV, with E(acc)=-0.60V and t(acc)=15s. From these parameters, it was also possible to develop a detailed study about the kinetic and mechanistic events involved in the reduction process. Two well-defined peaks were observed in the cathodic scan, and peak 2 was used to obtain analytical curves. A linear range between 4.98×10(-8) and 6.10×10(-7)mol L(-1), with a detection limit of 2.54×10(-9)mol L(-1) and a quantification limit of 8.47×10(-9)mol L(-1), was observed. Moreover, it was possible to achieve a simple, selective, and versatile methodology adaptable to the quantification of dexamethasone because common excipients used in multicomponent commercial formulations caused no interference. The satisfactory recoveries and the low relative standard deviation data reflected the high accuracy and precision of the proposed method for the determination of dexamethasone in injectable eye drops and elixir samples.


Subject(s)
Dexamethasone/analysis , Glucocorticoids/analysis , Animals , Drug Combinations , Electrochemistry , Electrodes , Humans , Hydrogen-Ion Concentration , Kinetics , Mercury , Models, Chemical , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...