Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Prep Biochem Biotechnol ; 54(3): 317-327, 2024.
Article in English | MEDLINE | ID: mdl-38178713

ABSTRACT

ß-glucosidase is an essential enzyme for the enzymatic hydrolysis of lignocellulosic biomass, as it catalyzes the final stage of cellulose breakdown, releasing glucose. This paper aims to produce ß-glucosidase from Saccharomyces cerevisiae and evaluate the enzymatic degradation of delignified sugarcane bagasse. S. cerevisiae was grown in yeast peptone dextrose medium. Partial purification of the enzyme was achieved through precipitating proteins with ethanol, and the optimal activity was measured by optimizing pH and temperature. The effects of ions, glucose tolerance, and heat treatment were evaluated. Delignified sugarcane bagasse was hydrolyzed by the enzyme. ß-glucosidase showed a specific activity of 14.0712 ± 0.0207 U mg-1. Partial purification showed 1.22-fold purification. The optimum pH and temperature were 6.24 and 54 °C, respectively. ß-glucosidase showed tolerance to glucose, with a relative activity of 71.27 ± 0.16%. Thermostability showed a relative activity of 58.84 ± 0.91% at 90 °C. The hydrolysis of delignified sugarcane bagasse showed a conversion rate of 87.97 ± 0.10% in the presence of Zn2+, an ion that promoted the highest increase in enzymatic activity. S. cerevisiae produced an extracellular ß-glucosidase with good stability at pH and temperatures conventionally applied in the hydrolysis of lignocellulosic biomass, showing viability for industrial application.


Subject(s)
Saccharomyces cerevisiae , Saccharum , Cellulose , Hydrolysis , beta-Glucosidase , Glucose
2.
J Food Sci Technol ; 60(11): 2761-2771, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37711566

ABSTRACT

Bioethanol is obtained by hydrolysis of sugarcane bagasse by cellulases. Commercial cellulases are expensive and have a low concentration of ß-glucosidase (EC 3.2.1.21), which decrease hydrolysis efficiency. The present work aims to produce supernatant rich in ß-glucosidase (BGL) using the yeast Rhodotorula oryzicola and apply it in the hydrolysis of delignified sugarcane bagasse. Yeast fermented in a modified YPD (Yeast Peptone Dextrose) medium with 0.5% (w/v) cellobiose and 1.0% (w/v) glucose produced BGL with a specific activity of 1.44 ± 0.013 U/mg. Partial purification of BGL by acetone showed a specific activity of 3.48 U/mg. The optimum pH and temperature were 6.02 and 65 °C, respectively. BGL partially purified (BGLppR.oryzicola) by acetone showed tolerance to glucose, with a relative activity of 82.89 ± 0.11%. The activity increased with the addition of iron sulfate and zinc sulfate and decreased with manganese sulfate. BGL partially purified was thermal stable, with a relative activity of 85.59% after 60 min at 90 °C. BGL partially purified applied in the hydrolysis of sugarcane bagasse delignified with 3% (w/w) NaOH + 6% (w/w) Na2SO3 showed a conversion rate of 72.46 ± 1.60%. The results showed that BGL partially purified is a glucose tolerant cellulase of low-cost, promising the application of bioethanol production.

3.
Biotechnol Appl Biochem ; 69(3): 963-973, 2022 Jun.
Article in English | MEDLINE | ID: mdl-33855775

ABSTRACT

ß-Glucosidases (BGLs) belong to the group of enzymes of cellulases and act in the last stage of cellulose degradation, releasing glucose molecules, eliminating the inhibitory effect of cellobiose. This study focused on the production, characterization, and application of BGL from Moniliophthora perniciosa in the hydrolysis of pretreated sugarcane bagasse (3% NaOH + 6% Na2 SO3 ), with varying enzymatic loads and reaction times. The enzyme showed an optimum pH of 4.5 and 60°C. It was stable at all temperatures analyzed (50-90°C) and retained about 100% of its activity at 50°C after 60 min of incubation. Among the ions analyzed, BaCl2 increased BGL activity 9.04 ± 1.41 times. The maximum production of reducing sugars (89.15%) was achieved after 48 h with 10 mg of protein.


Subject(s)
Saccharum , Agaricales , Cellulose/metabolism , Hydrolysis , Saccharum/metabolism , beta-Glucosidase/metabolism
4.
Food Sci Biotechnol ; 30(7): 959-969, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34395027

ABSTRACT

The crude extract containing inulinase from Rhodotorula mucilaginosa was obtained by submerged fermentation. Inulinase was immobilized on chicken eggshell by physical adsorption and covalent crosslinking, using glutaraldehyde as a crosslinking reagent, and Celite by adsorption. Fructooligosaccharides production was performed using immobilized inulinase (5%, w/v) and inulin substrate solution under experimental conditions evaluated through Doehlert experimental design. The production of inulinase was optimized for concentrations of D-glucose and yeast extract at 12.5 and 0.5 g/L, respectively, resulting in an optimal activity of 0.62 U. The optimal pH and temperature for enzyme activity were 8.0 and 75 °C, respectively, leading to an optimal activity of 3.54 U. The highest immobilization efficiency (46.27%) was obtained upon immobilization on Celite. Immobilization by adsorption to eggshell allowed for specific activity of 4.15 U/g, and adsorption to Celite resulted in specific activity of 3.70 U/g. The highest titer in fructooligosaccharides was obtained with an initial inulin concentration of 250 g/L (25%, w/v), and a reaction time of 16 h. Hence, immobilized inulinase proved to be a promising catalyst for fructooligosaccharides production since the formulation is performed through a simple, low-cost, and large-scale applicable methodology.

5.
Nanoscale ; 9(30): 10701-10714, 2017 Aug 03.
Article in English | MEDLINE | ID: mdl-28678269

ABSTRACT

A unique class of diruthenium(ii,iii) metallodrugs containing non-steroidal anti-inflammatory drug (NSAID), Ru2(NSAID), have been reported to show anticancer activity in glioma models in vitro and in vivo. This work reports the encapsulation of the lead metallodrug of ibuprofen (HIbp), [Ru2(Ibp)4Cl] or RuIbp, and also of the new analogue of naproxen (HNpx), [Ru2(Npx)4Cl] or RuNpx, in novel intravenously (i.v.) injectable solid polymer-lipid nanoparticles (SPLNs). A rationally selected composition of lipids/polymers rendered nearly spherical Ru2(NSAID)-SPLNs with a mean size of 120 nm and zeta potential of about -20 mV. The Ru2(NSAID)-SPLNs are characterized by spectroscopic techniques and the composition in terms of ruthenium-drug species is analyzed by mass spectrometry. The metallodrug-loaded nanoparticles showed high drug loading (17-18%) with ∼100% drug loading efficiency, and good colloidal stability in serum at body temperature. Fluorescence-labeled SPLNs were taken up by the cancer cells in a time- and energy-dependent manner as analyzed by confocal microscopy and fluorescence spectrometry. The Ru2(NSAID)-SPLNs showed enhanced cytotoxicity (IC50 at 60-100 µmol L-1 ) in relation to the corresponding Ru2(NSAID) metallodrugs in breast (EMT6 and MDA-MB-231) and prostate (DU145) cancer cells in vitro. The cell viability of both metallodrug nanoformulations is also compared with those of the parent NSAIDs, HIbp and HNpx, and their corresponding NSAID-SPLNs. In vivo and ex vivo fluorescence imaging revealed good biodistribution and high tumor accumulation of fluorescence-labeled SPLNs following i.v. injection in an orthotopic breast tumor model. The enhanced anticancer activity of the metallodrug-loaded SPLNs in these cell lines can be associated with the advantages of the nanoformulations, assigned mainly to the stability of the colloidal nanoparticles suitable for i.v. injection and enhanced cellular uptake. The findings of this work encourage future in vivo efficacy studies to further exploit the potential of the novel Ru2(NSAID)-SPLN nanoformulations for clinical application.


Subject(s)
Breast Neoplasms/drug therapy , Drug Carriers , Ibuprofen/administration & dosage , Lipids , Nanoparticles , Naproxen/administration & dosage , Prostatic Neoplasms/drug therapy , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Female , Humans , Ibuprofen/pharmacology , Male , Naproxen/pharmacology , Organometallic Compounds/administration & dosage , Organometallic Compounds/pharmacology , Polymers , Ruthenium , Tissue Distribution
6.
Anticancer Res ; 34(4): 1901-11, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24692725

ABSTRACT

AIM: Gliomas are primary brain tumours. Gamma-linolenic acid (GLA) exerts anti-proliferative effects. Several ruthenium-containing complexes have antiproliferative effects and can be used as adjuvant therapies in cisplatin-resistant cancer. The present study reports on the anti-proliferative properties and effects on tumour morphology of a novel diruthenium-GLA complex (Ru2GLA) and its comparison with GLA in the C6 rat glioma model both in vitro and in vivo. MATERIALS AND METHODS: In vitro and in vivo experiments were performed on C6 glioma rat cells, and in an orthotopic model. RESULTS: Ru2GLA (100 µM) appears to be an inhibitor of C6 rat glioma cell proliferation. The nuclear area of Ru2GLA-treated cells was 2.18-times larger than that of control cells, suggesting DNA replication occurred but mitosis was blocked in the G2-M phase. Ru2GLA (2 mM) inhibited C6 cell proliferation in vivo and the changes in tumor morphology confirm both cellular uptake and collagen fibre-binding in the extracellular matrix. CONCLUSION: Ru2GLA appears to be a low-toxicity drug and a potential candidate for anti-proliferative therapy of glioma.


Subject(s)
Glioma/pathology , Ruthenium/pharmacology , gamma-Linolenic Acid/pharmacology , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Extracellular Matrix/metabolism , Female , Glioma/drug therapy , Glioma/ultrastructure , Rats , Ruthenium/administration & dosage , Tumor Burden/drug effects , gamma-Linolenic Acid/administration & dosage
7.
An Acad Bras Cienc ; 84(2): 443-54, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22634747

ABSTRACT

Inulinase (ß-2,1-D- fructan fructanohydrolase), EC 3.2.1.7, targets the ß-2,1 linkage of inulin, a polyfructan consisting of linear ß-2,1 linked fructose, and hydrolyzes it into fructose. This use provides an alternative to produce fructose syrup through the hydrolysis of inulin. The objective of this work was to study the production, characterization and applications of inulinases from the fungal endophyte CCMB 328 isolated from the Brazilian semi-arid region. Response Surface Methodology (RSM) was employed to evaluate the effect of variables (concentration of glucose and yeast extract), on secreted inulinase activities detected in the culture medium and also in the inulin hydrolysis. The results showed that the best conditions for inulinase production by CCMB 328 are 9.89 g / L for glucose and 1.09 g / L for yeast extract. The concentration of 0.20 mol/L of NaCl and KCl increased the activity of inulinase from CCMB 328 by approximately 63% and 37%, respectively. The results also showed that the inulinase has potential for inulin hydrolysis, whose conversion yields roughly 72.48 % for an initial concentration of inulin at 1% (w/v).


Subject(s)
Fungi/enzymology , Glycoside Hydrolases/biosynthesis , Brazil , Desert Climate , Glycoside Hydrolases/chemistry
8.
Cell Biochem Funct ; 28(1): 15-23, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19927275

ABSTRACT

The present study reports the synthesis of a novel compound with the formula [Ru(2)(aGLA)4Cl] according to elemental analyses data, referred to as Ru(2)GLA. The electronic spectra of Ru(2)GLA is typical of a mixed valent diruthenium(II,III) carboxylate. Ru(2)GLA was synthesized with the aim of combining and possibly improving the anti-tumour properties of the two active components ruthenium and gamma-linolenic acid (GLA). The properties of Ru(2)GLA were tested in C6 rat glioma cells by analysing cell number, viability, lipid droplet formation, apoptosis, cell cycle distribution, mitochondrial membrane potential and reactive oxygen species. Ru(2)GLA inhibited cell proliferation in a time and concentration dependent manner. Nile Red staining suggested that Ru(2)GLA enters the cells and ICP-AES elemental analysis found an increase in ruthenium from <0.02 to 425 mg/Kg in treated cells. The sub-G1 apoptotic cell population was increased by Ru(2)GLA (22 +/- 5.2%) when analysed by FACS and this was confirmed by Hoechst staining of nuclei. Mitochondrial membrane potential was decreased in the presence of Ru(2)GLA (44 +/- 2.3%). In contrast, the cells which maintained a high mitochondrial membrane potential had an increase (18 +/- 1.5%) in reactive oxygen species generation. Both decreased mitochondrial membrane potential and increased reactive oxygen species generation may be involved in triggering apoptosis in Ru(2)GLA exposed cells. The EC(50) for Ru(2)GLA decreased with increasing time of exposure from 285 microM at 24 h, 211 microM at 48 h to 81 microM at 72 h. In conclusion, Ru(2)GLA is a novel drug with antiproliferative properties in C6 glioma cells and is a potential candidate for novel therapies in gliomas.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis , Glioma/drug therapy , Membrane Potential, Mitochondrial/drug effects , Organometallic Compounds/pharmacology , Reactive Oxygen Species/metabolism , Ruthenium/chemistry , gamma-Linolenic Acid/chemistry , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Benzimidazoles/pharmacology , Cell Line, Tumor , Cell Proliferation , Flow Cytometry , G1 Phase , Glioma/metabolism , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry , Oxazines/pharmacology , Rats , Spectrophotometry, Atomic , Staining and Labeling
SELECTION OF CITATIONS
SEARCH DETAIL
...