Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Chem Biol Drug Des ; 96(3): 948-960, 2020 09.
Article in English | MEDLINE | ID: mdl-33058457

ABSTRACT

Cruzain is an established target for the identification of novel trypanocidal agents, but how good are in vitro/in vivo correlations? This work describes the development of a random forests model for the prediction of the bioavailability of cruzain inhibitors that are Trypanosoma cruzi killers. Some common properties that characterize drug-likeness are poorly represented in many established cruzain inhibitors. This correlates with the evidence that many high-affinity cruzain inhibitors are not trypanocidal agents against T. cruzi. On the other hand, T. cruzi killers that present typical drug-like characteristics are likely to show better trypanocidal action than those without such features. The random forests model was not outperformed by other machine learning methods (such as artificial neural networks and support vector machines), and it was validated with the synthesis of two new trypanocidal agents. Specifically, we report a new lead compound, Neq0565, which was tested on T. cruzi Tulahuen (ß-galactosidase) with a pEC50 of 4.9. It is inactive in the host cell line showing a selectivity index (SI = EC50cyto /EC50T. cruzi ) higher than 50.


Subject(s)
Chagas Disease/drug therapy , Drug Design , Protozoan Proteins/antagonists & inhibitors , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Animals , Crystallography, X-Ray , Cysteine Endopeptidases , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry , Trypanocidal Agents/therapeutic use
2.
Bioorg Med Chem ; 28(22): 115743, 2020 11 15.
Article in English | MEDLINE | ID: mdl-33038787

ABSTRACT

Leishmania mexicana is an obligate intracellular protozoan parasite that causes the cutaneous form of leishmaniasis affecting South America and Mexico. The cysteine protease LmCPB is essential for the virulence of the parasite and therefore, it is an appealing target for antiparasitic therapy. A library of nitrile-based cysteine protease inhibitors was screened against LmCPB to develop a treatment of cutaneous leishmaniasis. Several compounds are sufficiently high-affinity LmCPB inhibitors to serve both as starting points for drug discovery projects and as probes for target validation. A 1.4 Å X ray crystal structure, the first to be reported for LmCPB, was determined for the complex of this enzyme covalently bound to an azadipeptide nitrile ligand. Mapping the structure-activity relationships for LmCPB inhibition revealed superadditive effects for two pairs of structural transformations. Therefore, this work advances our understanding of azadipeptidyl and dipeptidyl nitrile structure-activity relationships for LmCPB structure-based inhibitor design. We also tested the same series of inhibitors on related cysteine proteases cathepsin L and Trypanosoma cruzi cruzain. The modulation of these mammalian and protozoan proteases represents a new framework for targeting papain-like cysteine proteases.


Subject(s)
Aza Compounds/pharmacology , Cathepsin B/antagonists & inhibitors , Cysteine Proteinase Inhibitors/pharmacology , Leishmania mexicana/drug effects , Trypanocidal Agents/pharmacology , Aza Compounds/chemical synthesis , Aza Compounds/chemistry , Cathepsin B/metabolism , Crystallography, X-Ray , Cysteine Endopeptidases/metabolism , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/chemistry , Dipeptides/chemical synthesis , Dipeptides/chemistry , Dipeptides/pharmacology , Dose-Response Relationship, Drug , Leishmania mexicana/enzymology , Molecular Dynamics Simulation , Molecular Structure , Nitriles/chemical synthesis , Nitriles/chemistry , Nitriles/pharmacology , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/metabolism , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry
3.
Bioorg Chem ; 101: 104039, 2020 08.
Article in English | MEDLINE | ID: mdl-32629285

ABSTRACT

Cysteine proteases (CPs) are involved in a myriad of actions that include not only protein degradation, but also play an essential biological role in infectious and systemic diseases such as cancer. CPs also act as biomarkers and can be reached by active-based probes for diagnostic and mechanistic purposes that are critical in health and disease. In this paper, we present the modulation of a CP panel of parasites and mammals (Trypanosoma cruzi cruzain, LmCPB, CatK, CatL and CatS), whose inhibition by nitrile peptidomimetics allowed the identification of specificity and selectivity for a given CP. The activity cliffs identified at the CP inhibition level are useful for retrieving trends through multiple structure-activity relationships. For two of the cruzain inhibitors (10g and 4e), both enthalpy and entropy are favourable to Gibbs binding energy, thus overcoming enthalpy-entropy compensation (EEC). Group contribution of individual molecular modification through changes in enthalpy and entropy results in a separate partition on the relative differences of Gibbs binding energy (ΔΔG). Overall, this study highlights the role of CPs in polypharmacology and multi-target screening, which represents an imperative trend in the actual drug discovery effort.


Subject(s)
Cysteine Proteases/chemistry , Animals , Mammals , Molecular Dynamics Simulation , Molecular Structure , Structure-Activity Relationship
4.
PLoS Negl Trop Dis ; 14(3): e0007755, 2020 03.
Article in English | MEDLINE | ID: mdl-32163418

ABSTRACT

The cysteine protease cruzipain is considered to be a validated target for therapeutic intervention in the treatment of Chagas disease. A series of 26 new compounds were designed, synthesized, and tested against the recombinant cruzain (Cz) to map its S1/S1´ subsites. The same series was evaluated on a panel of four human cysteine proteases (CatB, CatK, CatL, CatS) and Leishmania mexicana CPB, which is a potential target for the treatment of cutaneous leishmaniasis. The synthesized compounds are dipeptidyl nitriles designed based on the most promising combinations of different moieties in P1 (ten), P2 (six), and P3 (four different building blocks). Eight compounds exhibited a Ki smaller than 20.0 nM for Cz, whereas three compounds met these criteria for LmCPB. Three inhibitors had an EC50 value of ca. 4.0 µM, thus being equipotent to benznidazole according to the antitrypanosomal effects. Our mapping approach and the respective structure-activity relationships provide insights into the specific ligand-target interactions for therapeutically relevant cysteine proteases.


Subject(s)
Cysteine Proteinase Inhibitors/pharmacology , Dipeptides/pharmacology , Leishmania mexicana/enzymology , Nitriles/pharmacology , Protozoan Proteins/antagonists & inhibitors , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/enzymology , Cysteine Endopeptidases , Cysteine Proteases/metabolism , Humans
5.
J Mol Model ; 24(1): 41, 2018 Jan 13.
Article in English | MEDLINE | ID: mdl-29332299

ABSTRACT

The main purpose of this study was to address the performance of virtual screening methods based on ligands and the protein structure of acetylcholinesterase (AChE) in order to retrieve novel human AChE (hAChE) inhibitors. In addition, a protocol was developed to identify novel hit compounds and propose new promising AChE inhibitors from the ZINC database with 10 million commercially available compounds. In this sense, 3D similarity searches using rapid overlay of chemical structures and similarity analysis through comparison of electrostatic overlay of docked hits were used to retrieve AChE inhibitors from collected databases. Molecular dynamics simulation of 100 ns was carried out to study the best docked compounds from similarity searches. Some key residues were identified as crucial for the dual binding mode of inhibitor with the interaction site. All results indicated the relevant use of EON and docking strategy for identifying novel hit compounds as promising potential anticholinesterase candidates, and seven new structures were selected as potential hAChE inhibitors. Graphical abstract Compound N01 in the 4M0E hAChE crystallography structure from docking results. Yellow dashed lines Hydrogen bonds, blue dashed lines π-stacking interactions, green dashed lines cation-π interactions.


Subject(s)
Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Cholinesterase Inhibitors/metabolism , Drug Discovery , Humans , Ligands
6.
Bioorg Med Chem Lett ; 27(22): 5031-5035, 2017 11 15.
Article in English | MEDLINE | ID: mdl-29054358

ABSTRACT

The effects on potency of cruzain inhibition of replacing a nitrile group with alternative warheads were explored. The oxime was almost an order of magnitude more potent than the corresponding nitrile and has the potential to provide access to the prime side of the catalytic site. Dipeptide aldehydes and azadipeptide nitriles were found to be two orders of magnitude more potent cruzain inhibitors than the corresponding dipeptide nitriles although potency differences were modulated by substitution at P1 and P3. Replacement of the α methylene of a dipeptide aldehyde with cyclopropane led to a loss of potency of almost three orders of magnitude. The vinyl esters and amides that were characterized as reversible inhibitors were less potent than the corresponding nitrile by between one and two orders of magnitude.


Subject(s)
Cysteine Endopeptidases/metabolism , Cysteine Proteinase Inhibitors/chemistry , Catalytic Domain , Cathepsin L/chemistry , Cathepsin L/metabolism , Cysteine Endopeptidases/chemistry , Cysteine Proteinase Inhibitors/metabolism , Dipeptides/chemistry , Drug Design , Kinetics , Nitriles/chemistry , Structure-Activity Relationship
7.
PLoS Negl Trop Dis ; 11(2): e0005343, 2017 02.
Article in English | MEDLINE | ID: mdl-28222138

ABSTRACT

The cysteine protease cruzipain is considered to be a validated target for therapeutic intervention in the treatment of Chagas disease. Anti-trypanosomal activity against the CL Brener strain of T. cruzi was observed in the 0.1 µM to 1 µM range for three nitrile-based cysteine protease inhibitors based on two scaffolds known to be associated with cathepsin K inhibition. The two compounds showing the greatest potency against the trypanosome were characterized by EC50 values (0.12 µM and 0.25 µM) that were an order of magnitude lower than the corresponding Ki values measured against cruzain, a recombinant form of cruzipain, in an enzyme inhibition assay. This implies that the anti-trypanosomal activity of these two compounds may not be explained only by the inhibition of the cruzain enzyme, thereby triggering a putative polypharmacological profile towards cysteine proteases.


Subject(s)
Cysteine Proteinase Inhibitors/pharmacology , Nitriles/pharmacology , Trypanocidal Agents/pharmacology , Cysteine Endopeptidases , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/chemistry , Models, Molecular , Molecular Structure , Nitriles/chemical synthesis , Nitriles/chemistry , Parasitic Sensitivity Tests , Protozoan Proteins/antagonists & inhibitors , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry , Trypanosoma cruzi/drug effects
8.
J Comput Aided Mol Des ; 31(2): 163-181, 2017 02.
Article in English | MEDLINE | ID: mdl-28054187

ABSTRACT

This Perspective explores how consideration of hydrogen bonding can be used to both predict and better understand partition coefficients. It is shown how polarity of both compounds and substructures can be estimated from measured alkane/water partition coefficients. When polarity is defined in this manner, hydrogen bond donors are typically less polar than hydrogen bond acceptors. Analysis of alkane/water partition coefficients in conjunction with molecular electrostatic potential calculations suggests that aromatic chloro substituents may be less lipophilic than is generally believed and that some of the effect of chloro-substitution stems from making the aromatic π-cloud less available to hydrogen bond donors. Relationships between polarity and calculated hydrogen bond basicity are derived for aromatic nitrogen and carbonyl oxygen. Aligned hydrogen bond acceptors appear to present special challenges for prediction of alkane/water partition coefficients and this may reflect 'frustration' of solvation resulting from overlapping hydration spheres. It is also shown how calculated hydrogen bond basicity can be used to model the effect of aromatic aza-substitution on octanol/water partition coefficients.


Subject(s)
Alkanes/chemistry , Models, Molecular , Water/chemistry , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Molecular Structure , Solubility , Static Electricity
9.
J Med Chem ; 59(9): 4278-88, 2016 05 12.
Article in English | MEDLINE | ID: mdl-26872049

ABSTRACT

Hydrogen bonding is discussed in the context of medicinal chemistry design. Minimized molecular electrostatic potential (Vmin) is shown to be an effective predictor of hydrogen bond basicity (pKBHX), and predictive models are presented for a number of hydrogen bond acceptor types relevant to medicinal chemistry. The problems posed by the presence of nonequivalent hydrogen bond acceptor sites in molecular structures are addressed by using nonlinear regression to fit measured pKBHX to calculated Vmin. Predictions are made for hydrogen bond basicity of fluorine in situations where relevant experimental measurements are not available. It is shown how predicted pKBHX can be used to provide insight into the nature of bioisosterism and to profile heterocycles. Examples of pKBHX prediction for molecular structures with multiple, nonequivalent hydrogen bond acceptors are presented.


Subject(s)
Chemistry, Pharmaceutical , Drug Design , Fluorine/chemistry , Hydrogen Bonding , Hydrogen-Ion Concentration
10.
PLoS Negl Trop Dis ; 9(7): e0003916, 2015.
Article in English | MEDLINE | ID: mdl-26173110

ABSTRACT

A series of compounds based on the dipeptidyl nitrile scaffold were synthesized and assayed for their inhibitory activity against the T. cruzi cysteine protease cruzain. Structure activity relationships (SARs) were established using three, eleven and twelve variations respectively at the P1, P2 and P3 positions. A Ki value of 16 nM was observed for the most potent of these inhibitors which reflects a degree of non-additivity in the SAR. An X-ray crystal structure was determined for the ligand-protein complex for the structural prototype for the series. Twenty three inhibitors were also evaluated for their anti-trypanosomal effects and an EC50 value of 28 µM was observed for the most potent of these. Although there remains scope for further optimization, the knowledge gained from this study is also transferable to the design of cruzain inhibitors based on warheads other than nitrile as well as alternative scaffolds.


Subject(s)
Chagas Disease/parasitology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Binding Sites , Chagas Disease/drug therapy , Crystallography, X-Ray , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Drug Design , Enzyme Inhibitors/chemistry , Humans , Kinetics , Nitriles/chemistry , Nitriles/pharmacology , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Structure-Activity Relationship , Trypanocidal Agents/chemistry , Trypanosoma cruzi/enzymology
11.
Future Med Chem ; 6(1): 17-33, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24358945

ABSTRACT

BACKGROUND: The enzyme gapdh, which acts in the glycolytic pathway, is seen as a potential target for pharmaceutical intervention of chagas disease. RESULTS: Herein, we report the discovery of new Trypanosoma cruzi GAPDH (TcGAPDH) inhibitors from target- and ligand-based virtual screening protocols using isothermal titration calorimetry (ITC) and molecular dynamics. Molecular dynamics simulations were used to gain insight on the binding poses of newly identified inhibitors acting at the TcGAPDH substrate (G3P) site. CONCLUSION: Nequimed125, the most potent inhibitor to act upon TcGAPDH so far, which sits on the G3P site without any contact with the co-factor (NAD(+)) site, underpins the result obtained by ITC that it is a G3P-competitive inhibitor. Molecular dynamics simulation provides biding poses of TcGAPDH inhibitors that correlate with mechanisms of inhibition observed by ITC. Overall, a new class of dihydroindole compounds that act upon TcGAPDH through a competitive mechanism of inhibition as proven by ITC measurements also kills T. cruzi.


Subject(s)
Glyceraldehyde-3-Phosphate Dehydrogenases/antagonists & inhibitors , Protozoan Proteins/antagonists & inhibitors , Trypanosoma cruzi/enzymology , Animals , Binding Sites , Catalytic Domain , Cell Survival/drug effects , Cells, Cultured , Drug Design , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/toxicity , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Hydrogen Bonding , Ligands , Mice , Microsomes, Liver/metabolism , Molecular Docking Simulation , Protozoan Proteins/metabolism , Rats , Rats, Wistar , Spleen/cytology , Thermodynamics , Trypanocidal Agents/chemistry , Trypanocidal Agents/metabolism , Trypanocidal Agents/toxicity , Trypanosoma cruzi/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...