Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Opin Insect Sci ; 29: 102-109, 2018 10.
Article in English | MEDLINE | ID: mdl-30551815

ABSTRACT

Transcriptomic, proteomic and genomic studies significantly improved our understanding of the complexity of blood feeding insect saliva providing unparalleled evolutionary insights. Salivary genes appeared to be under strong selective pressure with gene duplication and functional diversification being a powerful driver in the evolution of novel salivary genes/functions. The first insect salivary proteins responsible for complement inhibition were identified and a widespread mechanism of action shared by unrelated salivary protein families was recognized and named kratagonism. microRNAs were for the first time described in the saliva of a few blood feeding arthropods raising intriguing questions on their possible contribution to vertebrate host manipulation and pathogen transmission and further emphasizing how much we still have to learn on blood feeding insect saliva.


Subject(s)
Genome, Insect , Insect Proteins/genetics , Insecta/chemistry , Proteome , Saliva/chemistry , Salivary Proteins and Peptides/genetics , Transcriptome , Animals , Gene Expression Profiling , Genomics , Insect Proteins/metabolism , Insecta/genetics , Insecta/metabolism , Proteomics , Salivary Proteins and Peptides/metabolism
2.
BMC Genomics ; 15: 636, 2014 Jul 29.
Article in English | MEDLINE | ID: mdl-25073905

ABSTRACT

BACKGROUND: Genome sequencing of Anopheles gambiae was completed more than ten years ago and has accelerated research on malaria transmission. However, annotation needs to be refined and verified experimentally, as most predicted transcripts have been identified by comparative analysis with genomes from other species. The mosquito midgut-the first organ to interact with Plasmodium parasites-mounts effective antiplasmodial responses that limit parasite survival and disease transmission. High-throughput Illumina sequencing of the midgut transcriptome was used to identify new genes and transcripts, contributing to the refinement of An. gambiae genome annotation. RESULTS: We sequenced ~223 million reads from An. gambiae midgut cDNA libraries generated from susceptible (G3) and refractory (L35) mosquito strains. Mosquitoes were infected with either Plasmodium berghei or Plasmodium falciparum, and midguts were collected after the first or second Plasmodium infection. In total, 22,889 unique midgut transcript models were generated from both An. gambiae strain sequences combined, and 76% are potentially novel. Of these novel transcripts, 49.5% aligned with annotated genes and appear to be isoforms or pre-mRNAs of reference transcripts, while 50.5% mapped to regions between annotated genes and represent novel intergenic transcripts (NITs). Predicted models were validated for midgut expression using qRT-PCR and microarray analysis, and novel isoforms were confirmed by sequencing predicted intron-exon boundaries. Coding potential analysis revealed that 43% of total midgut transcripts appear to be long non-coding RNA (lncRNA), and functional annotation of NITs showed that 68% had no homology to current databases from other species. Reads were also analyzed using de novo assembly and predicted transcripts compared with genome mapping-based models. Finally, variant analysis of G3 and L35 midgut transcripts detected 160,742 variants with respect to the An. gambiae PEST genome, and 74% were new variants. Intergenic transcripts had a higher frequency of variation compared with non-intergenic transcripts. CONCLUSION: This in-depth Illumina sequencing and assembly of the An. gambiae midgut transcriptome doubled the number of known transcripts and tripled the number of variants known in this mosquito species. It also revealed existence of a large number of lncRNA and opens new possibilities for investigating the biological function of many newly discovered transcripts.


Subject(s)
Anopheles/genetics , Intestinal Mucosa/metabolism , Molecular Sequence Annotation/methods , Transcriptome , Animals , Anopheles/embryology , Anopheles/parasitology , Genetic Variation , Genomics , High-Throughput Nucleotide Sequencing , Plasmodium berghei/physiology , Plasmodium falciparum/physiology , RNA, Messenger/genetics , Sequence Analysis, RNA
3.
BMC Biochem ; 12: 32, 2011 Jun 27.
Article in English | MEDLINE | ID: mdl-21708020

ABSTRACT

BACKGROUND: Ixodes scapularis, commonly known as the blacklegged or deer tick, is the main vector of Lyme disease in the United States. Recent progress in transcriptome research has uncovered hundreds of different proteins expressed in the salivary glands of hard ticks, the majority of which have no known function, and include many novel protein families. We recently identified transcripts coding for two putative cytosolic sulfotransferases in these ticks which recognized phenolic monoamines as their substrates. In this current study, we characterize the genetic expression of these two cytosolic sulfotransferases throughout the tick life cycle as well as the enzymatic properties of the corresponding recombinant proteins. Interestingly, the resultant recombinant proteins showed sulfotransferase activity against both neurotransmitters dopamine and octopamine. RESULTS: The two sulfotransferase genes were coded as Ixosc SULT 1 & 2 and corresponding proteins were referred as Ixosc Sult 1 and 2. Using gene-specific primers, the sulfotransferase transcripts were detected throughout the blacklegged tick life cycle, including eggs, larvae, nymphs, adult salivary glands and adult midgut. Notably, the mRNA and protein levels were altered upon feeding during both the larval and nymphal life stages. Quantitative PCR results confirm that Ixosc SULT1 was statistically increased upon blood feeding while Ixosc SULT 2 was decreased. This altered expression led us to further characterize the function of these proteins in the Ixodid tick. The sulfotransferase genes were cloned and expressed in a bacterial expression system, and purified recombinant proteins Ixosc Sult 1(R) and 2(R) showed sulfotransferase activity against neurotransmitters dopamine and octopamine as well as the common sulfotransferase substrate p-nitrophenol. Thus, dopamine- or octopamine-sulfonation may be involved in altering the biological signal for salivary secretion in I. scapularis. CONCLUSIONS: Collectively, these results suggest that a function of Ixosc Sult 1 and Sult 2 in Ixodid tick salivary glands may include inactivation of the salivation signal via sulfonation of dopamine or octopamine.


Subject(s)
Ixodes/enzymology , Sulfotransferases/genetics , Sulfotransferases/metabolism , Animals , Blood , Cloning, Molecular , Dopamine/metabolism , Feeding Behavior , Gene Expression Regulation, Enzymologic , Ixodes/genetics , Ixodes/growth & development , Life Cycle Stages , Neurotransmitter Agents/metabolism , Nitrophenols/metabolism , Nymph/enzymology , Octopamine/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Salivary Glands/enzymology , Sequence Homology, Amino Acid , Signal Transduction
4.
BMC Genomics ; 12: 136, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21362191

ABSTRACT

BACKGROUND: Ticks--vectors of medical and veterinary importance--are themselves also significant pests. Tick salivary proteins are the result of adaptation to blood feeding and contain inhibitors of blood clotting, platelet aggregation, and angiogenesis, as well as vasodilators and immunomodulators. A previous analysis of the sialotranscriptome (from the Greek sialo, saliva) of Amblyomma variegatum is revisited in light of recent advances in tick sialomes and provides a database to perform a proteomic study. RESULTS: The clusterized data set has been expertly curated in light of recent reviews on tick salivary proteins, identifying many new families of tick-exclusive proteins. A proteome study using salivary gland homogenates identified 19 putative secreted proteins within a total of 211 matches. CONCLUSIONS: The annotated sialome of A. variegatum allows its comparison to other tick sialomes, helping to consolidate an emerging pattern in the salivary composition of metastriate ticks; novel protein families were also identified. Because most of these proteins have no known function, the task of functional analysis of these proteins and the discovery of novel pharmacologically active compounds becomes possible.


Subject(s)
Gene Expression Profiling , Ixodidae/genetics , Proteome/genetics , Salivary Proteins and Peptides/genetics , Amino Acid Sequence , Animals , Chromatography, Liquid , Computational Biology , Databases, Protein , Female , Gene Library , Molecular Sequence Data , Tandem Mass Spectrometry
5.
BMC Res Notes ; 3: 248, 2010 Oct 04.
Article in English | MEDLINE | ID: mdl-20920356

ABSTRACT

BACKGROUND: Aedes aegypti is the principal vector of dengue and yellow fever viruses. The availability of the sequenced and annotated genome enables genome-wide analyses of gene expression in this mosquito. The large amount of data resulting from these analyses requires efficient cataloguing before it becomes useful as the basis for new insights into gene expression patterns and studies of the underlying molecular mechanisms for generating these patterns. FINDINGS: We provide a publicly-accessible database and data-mining tool, aeGEPUCI, that integrates 1) microarray analyses of sex- and stage-specific gene expression in Ae. aegypti, 2) functional gene annotation, 3) genomic sequence data, and 4) computational sequence analysis tools. The database can be used to identify genes expressed in particular stages and patterns of interest, and to analyze putative cis-regulatory elements (CREs) that may play a role in coordinating these patterns. The database is accessible from the address http://www.aegep.bio.uci.edu. CONCLUSIONS: The combination of gene expression, function and sequence data coupled with integrated sequence analysis tools allows for identification of expression patterns and streamlines the development of CRE predictions and experiments to assess how patterns of expression are coordinated at the molecular level.

6.
BMC Genomics ; 11: 160, 2010 Mar 09.
Article in English | MEDLINE | ID: mdl-20214793

ABSTRACT

BACKGROUND: Tsetse flies, vectors of African trypanosomes, undergo viviparous reproduction (the deposition of live offspring). This reproductive strategy results in a large maternal investment and the deposition of a small number of progeny during a female's lifespan. The reproductive biology of tsetse has been studied on a physiological level; however the molecular analysis of tsetse reproduction requires deeper investigation. To build a foundation from which to base molecular studies of tsetse reproduction, a cDNA library was generated from female tsetse (Glossina morsitans morsitans) reproductive tissues and the intrauterine developmental stages. 3438 expressed sequence tags were sequenced and analyzed. RESULTS: Analysis of a nonredundant catalogue of 1391 contigs resulted in 520 predicted proteins. 475 of these proteins were full length. We predict that 412 of these represent cytoplasmic proteins while 57 are secreted. Comparison of these proteins with other tissue specific tsetse cDNA libraries (salivary gland, fat body/milk gland, and midgut) identified 51 that are unique to the reproductive/immature cDNA library. 11 unique proteins were homologous to uncharacterized putative proteins within the NR database suggesting the identification of novel genes associated with reproductive functions in other insects (hypothetical conserved). The analysis also yielded seven putative proteins without significant homology to sequences present in the public database (unknown genes). These proteins may represent unique functions associated with tsetse's viviparous reproductive cycle. RT-PCR analysis of hypothetical conserved and unknown contigs was performed to determine basic tissue and stage specificity of the expression of these genes. CONCLUSION: This paper identifies 51 putative proteins specific to a tsetse reproductive/immature EST library. 11 of these proteins correspond to hypothetical conserved genes and 7 proteins are tsetse specific.


Subject(s)
Gene Expression Profiling , Tsetse Flies/genetics , Tsetse Flies/physiology , Amino Acid Sequence , Animals , Cluster Analysis , Comparative Genomic Hybridization , Contig Mapping , Expressed Sequence Tags , Female , Gene Expression Regulation, Developmental , Gene Library , Genes, Insect , Life Cycle Stages/genetics , Life Cycle Stages/physiology , Molecular Sequence Data , Ovary/metabolism , Phylogeny , Reproduction/genetics , Reproduction/physiology , Sequence Alignment , Sequence Analysis, DNA , Species Specificity , Uterus/metabolism
7.
BMC Genomics ; 11: 51, 2010 Jan 20.
Article in English | MEDLINE | ID: mdl-20089177

ABSTRACT

BACKGROUND: Saliva of adult female mosquitoes help sugar and blood feeding by providing enzymes and polypeptides that help sugar digestion, control microbial growth and counteract their vertebrate host hemostasis and inflammation. Mosquito saliva also potentiates the transmission of vector borne pathogens, including arboviruses. Culex tarsalis is a bird feeding mosquito vector of West Nile Virus closely related to C. quinquefasciatus, a mosquito relatively recently adapted to feed on humans, and the only mosquito of the genus Culex to have its sialotranscriptome so far described. RESULTS: A total of 1,753 clones randomly selected from an adult female C. tarsalis salivary glands (SG) cDNA library were sequenced and used to assemble a database that yielded 809 clusters of related sequences, 675 of which were singletons. Primer extension experiments were performed in selected clones to further extend sequence coverage, allowing for the identification of 283 protein sequences, 80 of which code for putative secreted proteins. CONCLUSION: Comparison of the C. tarsalis sialotranscriptome with that of C. quinquefasciatus reveals accelerated evolution of salivary proteins as compared to housekeeping proteins. The average amino acid identity among salivary proteins is 70.1%, while that for housekeeping proteins is 91.2% (P < 0.05), and the codon volatility of secreted proteins is significantly higher than those of housekeeping proteins. Several protein families previously found exclusive of mosquitoes, including only in the Aedes genus have been identified in C. tarsalis. Interestingly, a protein family so far unique to C. quinquefasciatus, with 30 genes, is also found in C. tarsalis, indicating it was not a specific C. quinquefasciatus acquisition in its evolution to optimize mammal blood feeding.


Subject(s)
Culex/genetics , Gene Expression Profiling , Salivary Proteins and Peptides/genetics , Amino Acid Sequence , Animals , Computational Biology , Evolution, Molecular , Expressed Sequence Tags , Female , Gene Library , Genes, Insect , Molecular Sequence Data , Salivary Glands/metabolism , Salivary Proteins and Peptides/metabolism , Sequence Alignment , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...