Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 24(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38794006

ABSTRACT

Providing employees with proper work conditions should be one of the main concerns of any employer. Even so, in many cases, work shifts chronically expose the workers to a wide range of potentially harmful compounds, such as ammonia. Ammonia has been present in the composition of products commonly used in a wide range of industries, namely production in lines, and also laboratories, schools, hospitals, and others. Chronic exposure to ammonia can yield several diseases, such as irritation and pruritus, as well as inflammation of ocular, cutaneous, and respiratory tissues. In more extreme cases, exposure to ammonia is also related to dyspnea, progressive cyanosis, and pulmonary edema. As such, the use of ammonia needs to be properly regulated and monitored to ensure safer work environments. The Occupational Safety and Health Administration and the European Agency for Safety and Health at Work have already commissioned regulations on the acceptable limits of exposure to ammonia. Nevertheless, the monitoring of ammonia gas is still not normalized because appropriate sensors can be difficult to find as commercially available products. To help promote promising methods of developing ammonia sensors, this work will compile and compare the results published so far.


Subject(s)
Ammonia , Electronic Nose , Occupational Exposure , Ammonia/analysis , Humans , Occupational Exposure/analysis , Occupational Exposure/prevention & control , Workplace , Occupational Health , Environmental Monitoring/methods , Working Conditions
2.
Biosensors (Basel) ; 13(11)2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37998156

ABSTRACT

Prostate cancer is one of the most prevalent tumors in men, accounting for about 7.3% of cancer deaths. Although there are several strategies for diagnosing prostate cancer, these are only accurate when the tumor is already at a very advanced stage, so early diagnosis is essential. Stanniocalcin 1 (STC1) is a secreted glycoprotein, which has been suggested as a tumor marker as its increased expression is associated with the development and/or progression of different types of malignant tumors. In this work, an electronic tongue (ET) prototype, based on a set of four sensors prepared from thin films that included STC1 antibodies for detecting prostate cancer, was developed. In the preparation of the thin films, polyelectrolytes of polyallylamine hydrochloride, polystyrene sulfonate of sodium and polyethyleneimine, and the biomolecules chitosan, protein A, and STC1 antibody were used. These films were deposited on quartz lamellae and on solid supports using layer-on-layer and self-assembly techniques. The deposition of the films was analyzed by ultraviolet-visible spectroscopy, and the detection of STC1 in aqueous solutions of PBS was analyzed by impedance spectroscopy. The impedance data were statistically analyzed using principal component analysis. The ETs formed by the four sensors and the three best sensors could detect the antigen at concentrations in the range from 5 × 10-11 to 5 × 10-4 M. They showed a linear dependence with the logarithm of the antigen concentration and a sensitivity of 5371 ± 820 and 4863 ± 634 per decade of concentration, respectively. Finally, the results allow us to conclude that this prototype can advance to the calibration phase with patient samples.


Subject(s)
Biosensing Techniques , Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/metabolism , Glycoproteins/metabolism , Spectrum Analysis , Biosensing Techniques/methods
3.
Protein Expr Purif ; 211: 106336, 2023 11.
Article in English | MEDLINE | ID: mdl-37419399

ABSTRACT

The PARP1 (Poly (ADP-ribose) polymerase 1) enzyme is essential for single and double-strand break repair in humans. Alterations affecting PARP1 activity have severe consequences for human health and are associated with pathologies like cancer, and metabolic and neurodegenerative disorders. Here, we have developed a fast and easy procedure for the expression and purification of PARP1. Biologically active protein was purified to an apparent purity > 95%, with only two purification steps. A thermostability analysis revealed that PARP1 possessed improved stability in 50 mM Tris-HCl pH 8.0 (Tm = 44.2 ± 0.3 °C), thus this buffer was used throughout the whole purification procedure. The protein was shown to bind to DNA and has no inhibitor molecules bound to the active site. Finally, the yield of the purified PARP1 protein is sufficient for both biochemical, biophysical and structural analysis. The new protocol provides a fast and simple purification procedure while producing similar protein quantities to what has been described previously.


Subject(s)
DNA Repair , DNA , Humans , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , DNA/chemistry
4.
Nanomaterials (Basel) ; 13(10)2023 May 11.
Article in English | MEDLINE | ID: mdl-37242030

ABSTRACT

The development of a lipid nano-delivery system was attempted for three specific poly (ADP-ribose) polymerase 1 (PARP1) inhibitors: Veliparib, Rucaparib, and Niraparib. Simple lipid and dual lipid formulations with 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1'-glycerol) sodium salt (DPPG) and 1,2-dipalmitoyl-sn-glycero-3-phosphocoline (DPPC) were developed and tested following the thin-film method. DPPG-encapsulating inhibitors presented the best fit in terms of encapsulation efficiency (>40%, translates into concentrations as high as 100 µM), zeta potential values (below -30 mV), and population distribution (single population profile). The particle size of the main population of interest was ~130 nm in diameter. Kinetic release studies showed that DPPG-encapsulating PARP1 inhibitors present slower drug release rates than liposome control samples, and complex drug release mechanisms were identified. DPPG + Veliparib/Niraparib presented a combination of diffusion-controlled and non-Fickian diffusion, while anomalous and super case II transport was verified for DPPG + Rucaparib. Spectroscopic analysis revealed that PARP1 inhibitors interact with the DPPG lipid membrane, promoting membrane water displacement from hydration centers. A preferential membrane interaction with lipid carbonyl groups was observed through hydrogen bonding, where the inhibitors' protonated amine groups may be the major players in the PARP1 inhibitor encapsulation mode.

5.
Biochim Biophys Acta Biomembr ; 1865(5): 184156, 2023 06.
Article in English | MEDLINE | ID: mdl-37031871

ABSTRACT

The efficiency of methylene blue (MB) and acridine orange (AO) for photodynamic therapy (PDT) is increased if encapsulated in liposomes. In this paper we determine the molecular-level interactions between MB or AO and mixed monolayers of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DPPG) and cholesterol (CHOL) using surface pressure isotherms and polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS). To increase liposome stability, the effects from adding the surfactants Span® 80 and sodium cholate were also studied. Both MB and AO induce an expansion in the mixed monolayer, but this expansion is less significant in the presence of either Span® 80 or sodium cholate. The action of AO and MB occurred via coupling with phosphate groups of DPPC or DPPG. However, the levels of chain ordering and hydration of carbonyl and phosphate in headgroups depended on the photosensitizer and on the presence of Span® 80 or sodium cholate. From the PM-IRRAS spectra, we inferred that incorporation of MB and AO increased hydration of the monolayer headgroup, except for the case of the monolayer containing sodium cholate. This variability in behaviour offers an opportunity to tune the incorporation of AO and MB into liposomes which could be exploited in the release necessary for PDT.


Subject(s)
Acridine Orange , Methylene Blue , Liposomes , Sodium Cholate , Spectrophotometry, Infrared
6.
Int J Mol Sci ; 24(6)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36982675

ABSTRACT

Photodynamic therapy is a minimally invasive procedure used in the treatment of several diseases, including some types of cancer. It is based on photosensitizer molecules, which, in the presence of oxygen and light, lead to the formation of reactive oxygen species (ROS) and consequent cell death. The selection of the photosensitizer molecule is important for the therapy efficiency; therefore, many molecules such as dyes, natural products and metallic complexes have been investigated regarding their photosensitizing potential. In this work, the phototoxic potential of the DNA-intercalating molecules-the dyes methylene blue (MB), acridine orange (AO) and gentian violet (GV); the natural products curcumin (CUR), quercetin (QT) and epigallocatechin gallate (EGCG); and the chelating compounds neocuproine (NEO), 1,10-phenanthroline (PHE) and 2,2'-bipyridyl (BIPY)-were analyzed. The cytotoxicity of these chemicals was tested in vitro in non-cancer keratinocytes (HaCaT) and squamous cell carcinoma (MET1) cell lines. A phototoxicity assay and the detection of intracellular ROS were performed in MET1 cells. Results revealed that the IC50 values of the dyes and curcumin in MET1 cells were lower than 30 µM, while the values for the natural products QT and EGCG and the chelating agents BIPY and PHE were higher than 100 µM. The IC50 of MB and AO was greatly affected by irradiation when submitted to 640 nm and 457 nm light sources, respectively. ROS detection was more evident for cells treated with AO at low concentrations. In studies with the melanoma cell line WM983b, cells were more resistant to MB and AO and presented slightly higher IC50 values, in line with the results of the phototoxicity assays. This study reveals that many molecules can act as photosensitizers, but the effect depends on the cell line and the concentration of the chemical. Finally, significant photosensitizing activity of acridine orange at low concentrations and moderate light doses was demonstrated.


Subject(s)
Curcumin , Dermatitis, Phototoxic , Photochemotherapy , Skin Neoplasms , Humans , Photosensitizing Agents/chemistry , Intercalating Agents/pharmacology , Reactive Oxygen Species/metabolism , Curcumin/pharmacology , Acridine Orange , Cell Line, Tumor , Early Detection of Cancer , Photochemotherapy/methods , Skin Neoplasms/drug therapy , Skin Neoplasms/metabolism , Dermatitis, Phototoxic/drug therapy , Coloring Agents
7.
Colloids Surf B Biointerfaces ; 220: 112901, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36215895

ABSTRACT

Photodynamic therapy uses photosensitizer molecules for the photo-mediated treatment of several diseases such as cancer and skin disorders. However, most of the photosensitizer molecules present problems such as aggregation and low solubility in physiological environments which hinders the treatment efficacy. To overcome these problems, the development of stable liposomes loading photosensitizing molecules as delivery systems can be explored as promising alternatives to enhance cellular uptake and the therapy's efficacy. In this work, liposomes composed by different lipids with or without surfactants were characterized for the encapsulation of photosensitizer molecules such as Methylene Blue (MB) and Acridine Orange (AO). Liposomes were produced by the thin-film hydration method followed by extrusion to reduce particle size and were characterized by Dynamic Light Scattering and Atomic Force Microscopy. Encapsulation efficiency was evaluated as well as the release profile of these molecules from the liposome systems. Cytotoxicity and phototoxicity studies were performed on keratinocytes with and without carcinoma. Results showed that liposome's stability depends on the composition of lipids regardless of the presence of surfactants. Most stable liposomes were those with cholesterol plus the surfactants Span® 80 or sodium cholate that were able to provide higher stability for the liposomes considering the MB and AO encapsulation. Encapsulation efficiency (EE) studies revealed that AO had greater affinity for the vesicles presenting high EE (>98%) while for MB the encapsulation was, in general, moderate (between 63% and 86%). Greater phototoxicity was observed for MET1 squamous cell carcinoma (SCC) cells treated with AO liposomes, achieving similar half-maximal inhibition concentration (IC50) as for the free drug. Finally, two different possible approaches were found, namely, MB-liposomes with potential as a cytotoxic agent for cancer cells; and AO liposomes with a great phototoxicity potential at very low concentrations.


Subject(s)
Photochemotherapy , Skin Neoplasms , Humans , Liposomes , Acridine Orange , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Methylene Blue/pharmacology , Photochemotherapy/methods , Skin Neoplasms/drug therapy , Surface-Active Agents , Lipids
8.
Sensors (Basel) ; 22(17)2022 Sep 03.
Article in English | MEDLINE | ID: mdl-36081137

ABSTRACT

A new theory suggests that flammable gases generated by heated vegetation, in particular the volatile organic compounds (VOC) common to Mediterranean plants, may, under certain topographic and wind conditions, accumulate in locations where, after the arrival of the ignition source, they rapidly burst into flames as explosions. Hence, there is a need for the development of a system that can monitor the development of these compounds. In this work, a sensor's array is proposed as a method for monitoring the amount of eucalyptol and α-pinene, the major VOC compounds of the Eucalyptus and Pine trees. The detection of the target compounds was assessed using the impedance spectroscopy response of thin films. Combinations of layers of polyelectrolytes, such as poly(allylamine hydrochloride) (PAH), polyethyleneimine (PEI), poly(sodium 4-sytrenesulfonate) (PSS) graphene oxide (GO), and non/functionalized multiwall nanotubes (MWCNT-COOH or MWCNT), namely, PAH/GO, PEI/PSS, PEI/GO, PAH/MWCNT, PAH/MWCNT-COOH, films, and TiO2 and ZnO sputtered films, were deposited onto ceramic supports coated with gold interdigitated electrodes. The results showed that concentrations of the target VOCs, within the range of 68 to 999 ppmv, can be easily distinguished by analyzing the impedance spectra, particularly in the case of the ZnO- and PAH/GO-film-based sensors, which showed the best results in the detection of the target compounds. Through principal component analysis (PCA), the best set of features attained for the ZnO and PAH/GO based sensor devices revealed a linear trend of the PCA's first principal component with the concentration within the range 109 and 807 ppmv. Thus, the values of sensitivity to eucalyptol and α-pinene concentrations, which were (2.2 ± 0.3) × 10-4 and (5.0 ± 0.7) × 10-5 per decade, respectively, as well as resolutions of 118 and 136 ppbv, respectively, were identified.


Subject(s)
Volatile Organic Compounds , Wildfires , Zinc Oxide , Electrodes , Eucalyptol , Polyethyleneimine/chemistry , Volatile Organic Compounds/analysis
9.
Nanomaterials (Basel) ; 12(11)2022 May 29.
Article in English | MEDLINE | ID: mdl-35683715

ABSTRACT

Antibiotics represent a class of pharmaceuticals used to treat bacterial infections. However, the ever-growing use of antibiotics in agriculture and human and veterinary medicine has led to great concern regarding the outbreak of microbe strains resistant to antimicrobial drugs. Azithromycin, clarithromycin, and erythromycin are macrolides, a group of molecules with a broad spectrum of antibiotic properties, included in the second EU watchlist of emerging pollutants which emphasizes the importance of understanding their occurrence, fate, and monitoring in aquatic environments. Thus, the aim of this study was to develop sensors based on nanostructured thin films deposited on ceramic substrates with gold interdigitated electrodes, to detect azithromycin, clarithromycin, and erythromycin in water matrices (mineral and river water). Impedance spectroscopy was employed as the transducing method for the devices' electrical signal, producing multivariate datasets which were subsequently analyzed by principal component analysis (PCA). The PCA plots for mineral water demonstrated that ZnO- and TiO2-based sensors produced by DC magnetron sputtering either with 50% or 100% O2 in the sputtering chamber, were able to detect the three macrolides in concentrations between 10-15 M and 10-5 M. In river water, the PCA discrimination presented patterns and trends, between non-doped and doped, and sorting the different concentrations of azithromycin, clarithromycin, and erythromycin. Considering both matrices, by applying the e-tongue concept, sensitivity values of 4.8 ± 0.3, 4.6 ± 0.3, and 4.5 ± 0.3 per decade to azithromycin, clarithromycin, and erythromycin concentration, respectively, were achieved. In all cases, a resolution of 1 × 10-16 M was found near the 10-15 M concentration, the lowest antibiotic concentration measured.

10.
Nanomaterials (Basel) ; 11(11)2021 Nov 20.
Article in English | MEDLINE | ID: mdl-34835896

ABSTRACT

Photodynamic therapy (PDT) and photothermal therapy (PTT) are photo-mediated treatments with different mechanisms of action that can be addressed for cancer treatment. Both phototherapies are highly successful and barely or non-invasive types of treatment that have gained attention in the past few years. The death of cancer cells because of the application of these therapies is caused by the formation of reactive oxygen species, that leads to oxidative stress for the case of photodynamic therapy and the generation of heat for the case of photothermal therapies. The advancement of nanotechnology allowed significant benefit to these therapies using nanoparticles, allowing both tuning of the process and an increase of effectiveness. The encapsulation of drugs, development of the most different organic and inorganic nanoparticles as well as the possibility of surfaces' functionalization are some strategies used to combine phototherapy and nanotechnology, with the aim of an effective treatment with minimal side effects. This article presents an overview on the use of nanostructures in association with phototherapy, in the view of cancer treatment.

11.
Nanomaterials (Basel) ; 11(6)2021 Jun 12.
Article in English | MEDLINE | ID: mdl-34204721

ABSTRACT

Layer-by-layer films of poly (allylamine hydrochloride) (PAH) and graphene oxide (GO) were characterized, looking at growth with the number of bilayers, morphology, and electrical properties. The PAH/GO films revealed a linear increase in absorbance with the increase in the number of deposited bilayers, allowing the determination that 10.7 ± 0.1 mg m-2 of GO is adsorbed per unit of area of each bilayer. GO absorption bands at 146, 210, 247 and 299 nm, assigned to π-π* and n-π* transitions in the aromatic ring (phenol) and of the carboxylic group, respectively, were characterized by vacuum ultraviolet spectroscopy. The morphological characterization of these films demonstrated that they are not completely uniform, with a bilayer thickness of 10.5 ± 0.7 nm. This study also revealed that the films are composed of GO and/or PAH/GO fibers and that GO is completely adsorbed on top of PAH. The electrical properties of the films reveal that PAH/GO films present a semiconductor behavior. In addition, a slight decrease in conduction was observed when films were prepared in the presence of visible light, likely due to the presence of oxygen and moisture that contributes to the damage of GO molecules.

12.
Sensors (Basel) ; 21(7)2021 Mar 27.
Article in English | MEDLINE | ID: mdl-33801581

ABSTRACT

A Fabry-Pérot acoustic sensor based on a graphene oxide membrane was developed with the aim to achieve a faster and simpler fabrication procedure when compared to similar graphene-based acoustic sensors. In addition, the proposed sensor was fabricated using methods that reduce chemical hazards and environmental impacts. The developed sensor, with an optical cavity of around 246 µm, showed a constant reflected signal amplitude of 6.8 ± 0.1 dB for 100 nm wavelength range. The sensor attained a wideband operation range between 20 and 100 kHz, with a maximum signal-to-noise ratio (SNR) of 32.7 dB at 25 kHz. The stability and sensitivity to temperatures up to 90 °C was also studied. Moreover, the proposed sensor offers the possibility to be applied as a wideband microphone or to be applied in more complex systems for structural analysis or imaging.

13.
Colloids Surf B Biointerfaces ; 193: 111129, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32502833

ABSTRACT

Natural products such as epigallocatechin-3-gallate (EGCG) have been suggested for complementary treatments of cancer, since they lower toxic side effects of anticancer drugs, and possess anti-inflammatory and antioxidant properties that inhibit carcinogenesis. Their effects on cancer cells depend on interactions with the membrane, which is the motivation to investigate Langmuir monolayers as simplified membrane models. In this study, EGCG was incorporated in zwitterionic dipalmitoyl phosphatidyl choline (DPPC) and anionic dipalmitoyl phosphatidyl serine (DPPS) Langmuir monolayers to simulate healthy and cancer cells membranes, respectively. EGCG induces condensation in surface pressure isotherms for both DPPC and DPPS monolayers, interacting mainly via electrostatic forces and hydrogen bonding with the choline and phosphate groups of the phospholipids, according to data from polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS). Both monolayers become more compressible upon interaction with EGCG, which may be correlated to the synergy between EGCG and anticancer drugs reported in the literature. The interaction with EGCG is stronger for DPPC, leading to stronger morphological changes in Brewster angle microscopy (BAM) images and higher degree of condensation in the surface pressure isotherms. The changes induced by blue irradiation on DPPC and DPPS monolayers were largely precluded when EGCG was incorporated, thus confirming its antioxidant capacity for both types of membrane.


Subject(s)
Catechin/analogs & derivatives , Cell Membrane/chemistry , Light , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Catechin/chemistry , Particle Size , Phosphatidylserines , Surface Properties
14.
Sensors (Basel) ; 20(24)2020 Dec 20.
Article in English | MEDLINE | ID: mdl-33419266

ABSTRACT

Hormones have a harmful impact on the environment and their detection in water bodies is an urgent matter. In this work, we present and analyze a sensor device able to detect traces of the synthetic hormone 17α-ethinylestradiol (EE2) below 10-9 M in media of different complexities, namely, ultrapure, mineral and tap waters. This device consists of solid supports with interdigitated electrodes without and with a polyethylenimine (PEI) and poly (sodium 4-styrenesulfonate) (PSS) layer-by-layer film deposited on it. Device response was evaluated through capacitance, loss tangent and electric modulus spectra and the data were analyzed by principal component analysis method. While the three types of spectra were demonstrated to be able to clearly discriminate the different media, loss tangent spectra allow for the detection of EE2 concentration, with a sensitivity of -0.072 ± 0.009 and -0.44 ± 0.03 per decade of concentration, for mineral and tap water, respectively. Detection limits values were found to be lower than the ones present in the literature and presenting values of 8.6 fM (2.6 pg/L) and of 7.5 fM (22.2 pg/L) for tap and mineral waters, respectively. Moreover, the obtained response values follow the same behavior with EE2 concentration in any medium, meaning that loss tangent spectra allow the quantification of EE2 concentration in aqueous complex matrices.


Subject(s)
Drinking Water/analysis , Ethinyl Estradiol , Mineral Waters/analysis , Water Pollutants, Chemical , Ethinyl Estradiol/analysis , Water Pollutants, Chemical/analysis
15.
ACS Appl Bio Mater ; 2(11): 4790-4800, 2019 Nov 18.
Article in English | MEDLINE | ID: mdl-35021479

ABSTRACT

Polymeric scaffolds incorporating plant-derived compounds, produced by electrospinning, have attracted attention in the field of skin tissue engineering. This study evaluates the sustained antioxidant activity of polycaprolactone (PCL)/gelatin nanofibers prepared by electrospinning and incorporating loaded liposomes of epigallocatechin-3-gallate (EGCG), a strong antibacterial and antioxidant molecule found in green tea, that significantly accelerates the wound-healing process. The morphology and the structural properties of the membranes were characterized by scanning electron microscopy (SEM) and FTIR spectroscopy. Results revealed that the EGCG released from PCL+gelatin nanofibers scavenges the toxic ROS species generated by exposure to either H2O2 or UV radiation and slows down the oxidation events associated with damage. This study provides the basis for development of promising nanofiber formulations containing EGCG that might enhance repair/regeneration of skin tissue.

16.
J Sci Food Agric ; 98(2): 681-690, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28671261

ABSTRACT

BACKGROUND: In this paper, various extra-virgin and virgin olive oils samples from different Portuguese markets were studied. For this purpose, a voltammetric electronic tongue (VE-tongue), consisting of two kinds of working electrode within the array, together with physicochemical analysis and headspace gas chromatography coupled with mass spectrometry (HS-GC-MS), were applied. In addition, preliminary considerations of relationships between physicochemical parameters and multisensory system were reported. RESULTS: The physicochemical parameters exhibit significant differences among the analyzed olive oil samples that define its qualities. Regarding the aroma profile, 14 volatile compounds were characterized using HS-GC-MS; among these, hex-2-enal, hexanal, acetic acid, hex-3-ene-1-ol acetate and hex-3-en-1-ol were semi-quantitatively detected as the main aroma compounds in the analyzed samples. Moreover, pattern recognition methods demonstrate the discrimination power of the proposed VE-tongue system. The results reveal the VE-tongue's ability to classify olive oil samples and to identify unknown samples based of built models. In addition, the correlation between VE-tongue and physicochemical analysis exhibits a remarkable prediction model aimed at anticipating carotenoid content. CONCLUSION: The preliminary results of this investigation indicate that physicochemical and HS-GC-MS analysis, together with multisensory system coupled with chemometric techniques, presented a satisfactory performance regarding olive oil sample discrimination and identification. © 2017 Society of Chemical Industry.


Subject(s)
Electrochemical Techniques/instrumentation , Food Analysis/methods , Gas Chromatography-Mass Spectrometry/methods , Olive Oil/chemistry , Volatile Organic Compounds/chemistry , Carotenoids , Chlorophyll , Fatty Acids, Nonesterified , Odorants , Portugal , Solid Phase Microextraction
17.
Mater Sci Eng C Mater Biol Appl ; 58: 576-9, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26478346

ABSTRACT

The resilience of cells to ultraviolet (UV) irradiation is probably associated with the effects induced in biological molecules such as DNA and in the cell membrane. In this study, we investigated UV damage to the anionic 1.2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (sodium salt) (DPPG) phospholipid, which is an important component of cell membranes. In films cast from DPPG emulsions, UV irradiation induced cleavage of C-O, C=O and -PO(2-) bonds, while in Langmuir monolayers at the air/water interface representing the cell membrane this irradiation caused the monolayer stability to decrease. When DNA was present in the subphase, however, the effects from UV irradiation were smaller, since the ionic products from degradation of either DPPG or DNA stabilize the intact DPPG molecules. This mechanism may explain why UV irradiation does not cause immediate cell collapse, thus providing time for the cellular machinery to repair elements damaged by UV.


Subject(s)
DNA/chemistry , Phosphatidylglycerols/chemistry , Phosphatidylglycerols/radiation effects , Air , Anions , Ultraviolet Rays
18.
J Phys Chem B ; 119(27): 8544-52, 2015 Jul 09.
Article in English | MEDLINE | ID: mdl-26076391

ABSTRACT

The adsorption of intact liposomes onto solid supports is a fundamental issue when preparing systems with encapsulated biological molecules. In this work, the adsorption kinetic of 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (sodium salt) liposomes onto cushions prepared from commom polyelectrolytes by the layer-by-layer technique was investigated with the main objective of finding the surface conditions leading to the adsorption of intact liposomes. For this purpose, different cushion surface roughnesses were obtained by changing the number of cushion bilayers. The adsorbed amount per unit area was measured through quartz crystal microbalance, surface morphology was characterized by atomic force microscopy, and the surface composition was assessed by X-ray photoelectron spectroscopy. The results show that (1) the amount of adsorbed lipids depends on the number of cushion bilayers, (2) the cushions are uniformly covered by the adsorbed lipids, and (3) the surface morphology of polymer cushions tunes liposome rupture and its adsorption kinetics. The fraction of ruptured liposomes, calculated from the measured amount of adsorbed lipids, is a function of surface roughness together with other surface morphology parameters, namely the dominating in-plane spatial feature size, the fractal dimension, and other textural features as well as amplitude and hybrid parameters.


Subject(s)
Liposomes/chemistry , Phosphatidylglycerols/chemistry , Polymers/chemistry , Adsorption , Fractals , Gold Compounds/chemistry , Kinetics , Microscopy, Atomic Force , Models, Chemical , Molecular Structure , Photoelectron Spectroscopy , Quartz Crystal Microbalance Techniques , Surface Properties
19.
Radiat Environ Biophys ; 54(1): 111-121, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25249071

ABSTRACT

Organisms are often exposed to different types of ionizing radiation that, directly or not, will promote damage to DNA molecules and/or other cellular structures. Because of that, organisms developed a wide range of response mechanisms to deal with these threats. Endonuclease III is one of the enzymes responsible to detect and repair oxidized pyrimidine base lesions. However, the effect of radiation on the structure/function of these enzymes is not clear yet. Here, we demonstrate the effect of UV-C radiation on E. coli endonuclease III through several techniques, namely UV-visible, fluorescence and Mössbauer spectroscopies, as well as SDS-PAGE and electrophoretic mobility shift assay. We demonstrate that irradiation with a UV-C source has dramatic consequences on the absorption, fluorescence, structure and functionality of the protein, affecting its [4Fe-4S] cluster and its DNA-binding ability, which results in its inactivation. An UV-C radiation-induced conversion of the [4Fe-4S](2+) into a [2Fe-2S](2+) was observed for the first time and proven by Mössbauer and UV-visible analysis. This work also shows that the DNA-binding capability of endonuclease III is highly dependent of the nuclearity of the endogenous iron-sulfur cluster. Thus, from our point of view, in a cellular context, these results strengthen the argument that cellular sensitivity to radiation can also be due to loss of radiation-induced damage repair ability.


Subject(s)
Deoxyribonuclease (Pyrimidine Dimer)/radiation effects , Escherichia coli Proteins/radiation effects , Iron-Sulfur Proteins/radiation effects , Ultraviolet Rays , DNA/metabolism , DNA Repair , Deoxyribonuclease (Pyrimidine Dimer)/chemistry , Deoxyribonuclease (Pyrimidine Dimer)/genetics , Deoxyribonuclease (Pyrimidine Dimer)/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/metabolism , Plasmids , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/radiation effects , Spectrum Analysis
20.
Int J Radiat Biol ; 90(5): 344-50, 2014 May.
Article in English | MEDLINE | ID: mdl-24517474

ABSTRACT

PURPOSE: To understand the degradation processes and role of secondary species on deoxyribonucleic acid (DNA)-damaged fragments as a result of irradiation with energetic ions. MATERIALS AND METHODS: Damage caused to DNA thin films as a result of exposure to 4 keV carbon ions beam was accessed by analyzing the infrared spectra, obtained in situ for different irradiation times, with both bi-dimensional (2D) correlation spectroscopy and independent component analysis (ICA). RESULTS: Results indicated that deoxyribose, phosphate and base groups of the DNA molecule were being damaged and new reaction products as oxime and furfural groups are being formed. CONCLUSIONS: Damage on DNA bases is consistent with the formation of oxime products which react with DNA deoxyribose products forming furfural groups and confirming that DNA damage is caused by direct and indirect processes.


Subject(s)
Carbon/adverse effects , DNA Damage , Statistics as Topic/methods , Animals , Cattle , Spectrophotometry, Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...