Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Pineal Res ; 69(3): e12685, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32702775

ABSTRACT

Melatonin and its indoles derivatives are central in the synchronization of malaria parasites. In this research, we discovered that melatonin is unable to increase the parasitemia in the human malaria Plasmodium falciparum that lacks the kinase PfeIK1. The PfeIK1 knockout strain is a valuable tool in the screening of indol-related compound that blocks the melatonin effect in wild-type (WT) parasite development. The assays were performed by using flow cytometry with simultaneous labeling for mitochondria viability with MitoTracker Deep Red and nucleus staining with SYBR Green. We found that Melatotosil leads to an increase in parasitemia in P. falciparum and blocks melatonin effect in the WT parasite. Using microscopy imaging system, we found that Melatotosil at 500 nM is able to induce cytosolic calcium rise in transgenic PfGCaMP3 parasites. On the contrary, the compound Triptiofen blocks P. falciparum cell cycle with IC50 9.76 µM ± 0.6, inhibits melatonin action, and does not lead to a cytosolic calcium rise in PfGCaMP3 parasites. We also found that the synthetic indol-related compounds arrested parasite cycle for PfeIK1 knockout and (WT) P. falciparum (3D7) in 72 hours culture assays with the IC50 values slighting lower for the WT strain. We concluded that the kinase PfeIK1 is central for melatonin downstream signaling pathways involved in parasite cell cycle progression. More importantly, the indol-related compounds block its cycle as an upstream essential mechanism for parasite survival. Our data clearly show that this class of compounds emerge as an alternative for the problem of resistance with the classical antimalarials.


Subject(s)
Antimalarials/pharmacology , Cell Cycle , Malaria, Falciparum/enzymology , Plasmodium falciparum/enzymology , Signal Transduction , ets-Domain Protein Elk-1/antagonists & inhibitors , Antimalarials/chemistry , Humans , Malaria, Falciparum/drug therapy , Melatonin , ets-Domain Protein Elk-1/metabolism
2.
Cytometry A ; 79(11): 959-64, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22015733

ABSTRACT

Melatonin and its derivatives modulate the Plasmodium falciparum and Plasmodium chabaudi cell cycle. Flow cytometry was employed together with the nucleic acid dye YOYO-1 allowing precise discrimination between mono- and multinucleated forms of P. falciparum-infected red blood cell. The use of YOYO-1 permitted excellent discrimination between uninfected and infected red blood cells as well as between early and late parasite stages. Fluorescence intensities of schizont-stage parasites were about 10-fold greater than those of ring-trophozoite form parasites. Melatonin and related indolic compounds including serotonin, N-acetyl-serotonin and tryptamine induced an increase in the percentage of multinucleated forms compared to non-treated control cultures. YOYO-1 staining of infected erythrocyte and subsequent flow cytometry analysis provides a powerful tool in malaria research for screening of bioactive compounds.


Subject(s)
Erythrocytes/parasitology , Flow Cytometry/methods , Malaria/parasitology , Plasmodium falciparum/cytology , Staining and Labeling/methods , Animals , Benzoxazoles/analysis , Cell Cycle , Erythrocytes/drug effects , Erythrocytes/pathology , Fluorescence , Fluorescent Dyes/analysis , Humans , Life Cycle Stages/physiology , Malaria/pathology , Melatonin/pharmacology , Plasmodium chabaudi/cytology , Plasmodium chabaudi/drug effects , Plasmodium chabaudi/physiology , Plasmodium falciparum/drug effects , Plasmodium falciparum/physiology , Quinolinium Compounds/analysis , Serotonin/pharmacology , Tryptamines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...