Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 145(50): 27459-27470, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38059480

ABSTRACT

Doping, or incremental substitution of one element for another, is an effective way to tailor a compound's structure as well as its physical and chemical properties. Herein, we replaced up to 30% of Ni with Co in members of the family of layered LiNiB compounds, stabilizing the high-temperature polymorph of LiNiB while the room-temperature polymorph does not form. By studying this layered boride with in situ high-temperature powder diffraction, we obtained a distorted variant of LiNi0.7Co0.3B featuring a perfect interlayer placement of [Ni0.7Co0.3B] layers on top of each other─a structural motif not seen before in other borides. Because of the Co doping, LiNi0.7Co0.3B can undergo a nearly complete topochemical Li deintercalation under ambient conditions, resulting in a metastable boride with the formula Li0.04Ni0.7Co0.3B. Heating of Li0.04Ni0.7Co0.3B in anaerobic conditions led to yet another metastable boride, Li0.01Ni0.7Co0.3B, with a CoB-type crystal structure that cannot be obtained by simple annealing of Ni, Co, and B. No significant alterations of magnetic properties were detected upon Co-doping in the temperature-independent paramagnet LiNi0.7Co0.3B or its Li-deintercalated counterparts. Finally, Li0.01Ni0.7Co0.3B stands out as an exceptional catalyst for the selective hydrogenation of the vinyl C═C bond in 3-nitrostyrene, even in the presence of other competing functional groups. This research showcases an innovative approach to heterogeneous catalyst design by meticulously synthesizing metastable compounds.

2.
Proc Natl Acad Sci U S A ; 120(52): e2310779120, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38113259

ABSTRACT

We present a comprehensive study of the inhomogeneous mixed-valence compound, EuPd3S4, by electrical transport, X-ray diffraction, time-domain 151Eu synchrotron Mössbauer spectroscopy, and X-ray absorption spectroscopy measurements under high pressure. Electrical transport measurements show that the antiferromagnetic ordering temperature, TN, increases rapidly from 2.8 K at ambient pressure to 23.5 K at ~19 GPa and plateaus between ~19 and ~29 GPa after which no anomaly associated with TN is detected. A pressure-induced first-order structural transition from cubic to tetragonal is observed, with a rather broad coexistence region (~20 GPa to ~30 GPa) that corresponds to the TN plateau. Mössbauer spectroscopy measurements show a clear valence transition from approximately 50:50 Eu2+:Eu3+ to fully Eu3+ at ~28 GPa, consistent with the vanishing of the magnetic order at the same pressure. X-ray absorption data show a transition to a fully trivalent state at a similar pressure. Our results show that pressure first greatly enhances TN, most likely via enhanced hybridization between the Eu 4f states and the conduction band, and then, second, causes a structural phase transition that coincides with the conversion of the europium to a fully trivalent state.

3.
ACS Mater Au ; 2(5): 614-625, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36124003

ABSTRACT

Achieving kinetic control to synthesize metastable compounds is a challenging task, especially in solid-state reactions where the diffusion is slow. Another challenge is the unambiguous crystal structure determination for metastable compounds when high-quality single crystals suitable for single-crystal X-ray diffraction are inaccessible. In this work, we report an unconventional means of synthesis and an effective strategy to solve the crystal structure of an unprecedented metastable compound LiNi12B8. This compound can only be produced upon heating a metastable layered boride, HT-Li0.4NiB (HT: high temperature), in a sealed niobium container. A conventional heating and annealing of elements do not yield the title compound, which is consistent with the metastable nature of LiNi12B8. The process to crystallize this compound is sensitive to the annealing temperature and dwelling time, a testament to the complex kinetics involved in the formation of the product. The unavailability of crystals suitable for single-crystal X-ray diffraction experiments prompted solving the crystal structure from high-resolution synchrotron powder X-ray diffraction data. This compound crystallizes in a new structure type with space group I4/mmm (a = 10.55673(9) Å, c = 10.00982(8) Å, V = 1115.54(3) Å3, Z = 6). The resulting complex crystal structure of LiNi12B8 is confirmed by scanning transmission electron microscopy and solid-state 11B and 7Li NMR spectroscopy analyses. The extended Ni framework with Li/Ni disorder in its crystal structure resulted in the spin-glass or cluster glass type magnetic ordering below 24 K. This report illustrates a "contemporary twist" to traditional methodologies toward synthesizing a metastable compound and provides a recipe for solving structures by combining the complementary characterization techniques in the cases where the traditionally used single-crystal X-ray diffraction method is nonapplicable.

4.
Inorg Chem ; 61(16): 6160-6174, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35412816

ABSTRACT

A set of three Cr-dimer compounds, Cr2Q2(en)4X2 (Q: S, Se; X: Br, Cl; en: ethylenediamine), with monoatomic chalcogenide bridges have been synthesized via a single-step solvothermal route. Chalcogenide linkers mediate magnetic exchange between Cr3+ centers, while bidentate ethylenediamine ligands complete the distorted octahedral coordination of Cr centers. Unlike the compounds previously reported, none of the chalcogenide atoms are connected to extra ligands. Magnetic susceptibility studies indicate antiferromagnetic coupling between Cr3+ centers, which are moderate in Cr2Se2(en)4X2 and stronger in Cr2S2(en)4Cl2. Fitting the magnetic data requires a biquadratic exchange term. High-frequency EPR spectra showing characteristic signals due to coupled S = 1 spin states could be interpreted in terms of the "giant spin" Hamiltonian. A fourth compound, Cr2Se8(en)4, has a single diatomic Se bridge connecting the two Cr3+ centers and shows weak ferromagnetic exchange interactions. This work demonstrates the tunability in strength and type of exchange interactions between metal centers by manipulating the interatomic distances and number of bridging chalcogenide linkers.

5.
Inorg Chem ; 60(24): 19345-19355, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34889600

ABSTRACT

Canfieldite, Ag8SnS6, is a semiconducting mineral notable for its high ionic conductivity, photosensitivity, and low thermal conductivity. We report the solution growth of large single crystals of Ag8SnS6 of mass up to 1 g from a ternary Ag-Sn-S melt. On cooling from high temperature, Ag8SnS6 undergoes a known cubic (F4̅3m) to orthorhombic (Pna21) phase transition at ≈460 K. By studying the magnetization and thermal expansion between 5-300 K, we discover a second structural transition at ≈120 K. Single crystal X-ray diffraction reveals the low-temperature phase adopts a different orthorhombic structure with space group Pmn21 (a = 7.662 9(5) Å, b = 7.539 6(5) Å, c = 10.630 0(5) Å, Z = 2 at 90 K) that is isostructural to the room-temperature forms of the related Se-based compounds Ag8SnSe6 and Ag8GeSe6. The 120 K transition is first-order and has a large thermal hysteresis. On the basis of the magnetization and thermal expansion data, the room-temperature polymorph can be kinetically arrested into a metastable state by rapidly cooling to temperatures below 40 K. We last compare the room- and low-temperature forms of Ag8SnS6 with its argyrodite analogues, Ag8TQ6 (T = Si, Ge, Sn; Q = S, Se), and identify a trend relating the preferred structures to the unit cell volume, suggesting smaller phase volume favors the Pna21 arrangement. We support this picture by showing that the transition to the Pmn21 phase is avoided in Ge alloyed Ag8Sn1-xGexS6 samples as well as in pure Ag8GeS6.

6.
J Am Chem Soc ; 143(11): 4213-4223, 2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33719436

ABSTRACT

The pursuit of two-dimensional (2D) borides, MBenes, has proven to be challenging, not the least because of the lack of a suitable precursor prone to the deintercalation. Here, we studied room-temperature topochemical deintercalation of lithium from the layered polymorphs of the LiNiB compound with a considerable amount of Li stored in between [NiB] layers (33 at. % Li). Deintercalation of Li leads to novel metastable borides (Li∼0.5NiB) with unique crystal structures. Partial removal of Li is accomplished by exposing the parent phases to air, water, or dilute HCl under ambient conditions. Scanning transmission electron microscopy and solid-state 7Li and 11B NMR spectroscopy, combined with X-ray pair distribution function (PDF) analysis and DFT calculations, were utilized to elucidate the novel structures of Li∼0.5NiB and the mechanism of Li-deintercalation. We have shown that the deintercalation of Li proceeds via a "zip-lock" mechanism, leading to the condensation of single [NiB] layers into double or triple layers bound via covalent bonds, resulting in structural fragments with Li[NiB]2 and Li[NiB]3 compositions. The crystal structure of Li∼0.5NiB is best described as an intergrowth of the ordered single [NiB], double [NiB]2, or triple [NiB]3 layers alternating with single Li layers; this explains its structural complexity. The formation of double or triple [NiB] layers induces a change in the magnetic behavior from temperature-independent paramagnets in the parent LiNiB compounds to the spin-glassiness in the deintercalated Li∼0.5NiB counterparts. LiNiB compounds showcase the potential to access a plethora of unique materials, including 2D MBenes (NiB).

7.
Rev Sci Instrum ; 91(9): 095103, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-33003820

ABSTRACT

We report measurements of the temperature- and pressure-dependent resistance, R(T, p), of a manganin manometer in a 4He-gas pressure setup from room temperature down to the solidification temperature of 4He (Tsolid ∼ 50 K at 0.8 GPa) for pressures, p, between 0 GPa and ∼0.8 GPa. The same manganin wire manometer was also measured in a piston-cylinder cell (PCC) from 300 K down to 1.8 K and for pressures between 0 GPa and ∼2 GPa. From these data, we infer the temperature and pressure dependence of the pressure coefficient of manganin, α(T, p), defined by the equation Rp = (1 + αp)R0, where R0 and Rp are the resistances of manganin at ambient pressure and finite pressure, respectively. Our results indicate that upon cooling, α first decreases, then goes through a broad minimum at ∼120 K, and increases again toward lower temperatures. In addition, we find that α is almost pressure-independent at T ≳ 60 K up to p ∼ 2 GPa, but shows a pronounced p dependence at T ≲ 60 K. Using this manganin manometer, we demonstrate that p overall decreases with decreasing temperature in the PCC for the full pressure range and that the size of the pressure difference between room temperature and low temperatures (T = 1.8 K), Δp, decreases with increasing pressure. We also compare the pressure values inferred from the manganin manometer with the low-temperature pressure, determined from the superconducting transition temperature of elemental lead (Pb). As a result of these data and analysis, we propose a practical algorithm to infer the evolution of pressure with temperature in a PCC.

8.
J Environ Sci Health B ; 55(10): 865-875, 2020.
Article in English | MEDLINE | ID: mdl-32657214

ABSTRACT

This research aimed at implementing and validating a method for analysis of pesticide residues in crops. QuEChERS extraction method with PSA purification was used following analyzes by gas chromatography with tandem mass spectrometry in Selected Reaction Monitoring mode. A short run method was successfully developed for the determination of 41 pesticides, confirmed by two precursor-products for each analyte. The calibration curve for each analyte was linear at concentration range from 1 to 500 µg kg-1 with correlation coefficients higher than 0.99, low limits of detection (0.03 - 10.22 µg kg-1) and satisfactory precision. The developed method was used to investigate apples; mangos; strawberries; cucumbers and tomatoes from the Rio de Janeiro Food Distribution Center (CEASA).Most of the targeted pesticides (78%) were below detection limits. Apple and strawberry presented the highest pesticide contamination levels, many of which are not authorized by tthe Brazilian national regulatory agency (ANVISA).


Subject(s)
Crops, Agricultural/chemistry , Gas Chromatography-Mass Spectrometry/methods , Pesticide Residues/analysis , Pyrethrins/analysis , Solid Phase Extraction/methods , Tandem Mass Spectrometry/methods , Triazines/analysis , Brazil , Cucumis sativus/chemistry , Food Contamination/analysis , Fragaria/chemistry , Solanum lycopersicum/chemistry , Malus/chemistry , Mangifera/chemistry
9.
Angew Chem Int Ed Engl ; 58(44): 15855-15862, 2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31373096

ABSTRACT

Two novel lithium nickel boride polymorphs, RT-LiNiB and HT-LiNiB, with layered crystal structures are reported. This family of compounds was theoretically predicted by using the adaptive genetic algorithm (AGA) and subsequently synthesized by a hydride route with LiH as the lithium source. Unique among the known ternary transition-metal borides, the LiNiB structures feature Li layers alternating with nearly planar [NiB] layers composed of Ni hexagonal rings with a B-B pair at the center. A comprehensive study using a combination of single crystal/synchrotron powder X-ray diffraction, solid-state 7 Li and 11 B NMR spectroscopy, scanning transmission electron microscopy, quantum-chemical calculations, and magnetism has shed light on the intrinsic features of these polymorphic compounds. The unique layered structures of LiNiB compounds make them ultimate precursors for exfoliation studies, thus paving a way toward two-dimensional transition-metal borides, MBenes.

10.
Chemistry ; 25(16): 4123-4135, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30650212

ABSTRACT

Ternary lithium nickel borides LiNi3 B1.8 and Li2.8 Ni16 B8 have been synthesized by using reactive LiH as a precursor. This synthetic route allows better mixing of the precursor powders, thus facilitating rapid preparation of the alkali-metal-containing ternary borides. This method is suitable for "fast screening" of multicomponent systems comprised of elements with drastically different reactivities. The crystal structures of the compounds LiNi3 B1.8 and Li2.8 Ni16 B8 have been re-investigated by a combination of single-crystal X-ray/synchrotron powder diffraction, solid-state 7 Li and 11 B NMR spectroscopies, and scanning transmission electron microscopy. This has allowed the determination of fine structural details, including the split position of Ni sites and the ordering of B vacancies. Field-dependent and temperature-dependent magnetization measurements are consistent with spin-glass behavior for both samples.

SELECTION OF CITATIONS
SEARCH DETAIL
...