Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Oleo Sci ; 73(1): 11-23, 2024.
Article in English | MEDLINE | ID: mdl-38171726

ABSTRACT

Fruits such as bacaba (Oenocarpus bacaba Mart), pracaxi (Pentaclethra macroloba Kuntze) and uxi (Endopleura uchi (Huber) Cuatrec), from the Amazon rainforest, are potentially interesting for studies of natural products. The current article aims at mapping and characterizing studies on the bacaba, pracaxi and uxi species. This review reports the main bioactive compounds identified in these species and discusses their therapeutic potential. Searches were performed in MEDLINE (Via Pubmed) and Web of Science. Thirty-one studies that described or evaluated the development of formulations aimed at the therapeutic use of the species were included. The findings suggest that species have the potential for the development of pharmaceutical formulations due to their therapeutic properties. However, further studies are required to assess safety and efficacy of these products. Therefore, it is suggested that new research studies propose strategies so that technological development is based on awareness and preservation of the biome.


Subject(s)
Arecaceae , Fabaceae , Fruit , Chromatography, High Pressure Liquid , Oils
2.
J Pharm Biomed Anal ; 239: 115889, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38056286

ABSTRACT

Aniba canelilla (Kunth) Mez is an aromatic tree from Amazon region whose essential oil presents 1-nitro-2-phenylethane (NP) and methyleugenol (ME) as major compounds. Several properties are attributed to Aniba canelilla essential oil (ACEO), such as antifungal. Onychomycoses are fungal nail infections that require novel therapeutic alternatives, especially topical ones. However, to ensure the success of topical therapy, the active compound should be able to penetrate/permeate the nail plate, which is challenging due to the highly keratinized composition of this structure. Thus, the aims of this article were to develop, validate and apply a high-performance liquid chromatography method (HPLC-UV) to quantify NP and ME in porcine hoof extract (PHE) and receptor fluid (RF) during in vitro permeation/retention studies in nail model, for which porcine hoof membranes were used. For method development, two Designs of Experiment (DoE) were adopted: 23 Full Factorial and Box-Behnken. Retention times of 5.65 and 7.49 min were achieved for NP and ME, respectively. The method was full validated for NP and ME quantification in receptor fluid, in accordance with the recommended parameters by ICH Q2(R1) Guideline. In addition, the method was full validated for NP and ME quantification in porcine hoof extract, considering the parameters and criteria of ICH M10 Guideline. In vitro permeation/retention studies were carried out in nail model, and promising results were obtained. NP reached the receptor fluid in the order of 441.1 ± 92.1 µg/cm2 at 72 h. The amount of NP and ME retained into porcine hoof membrane was 1272.6 ± 225.7 µg/cm2 and 84.7 ± 20.4 µg/cm2, respectively, at 72 h. Our findings open perspective to develop topical formulations containing ACEO as active compound aiming the management of onychomycosis.


Subject(s)
Oils, Volatile , Onychomycosis , Swine , Animals , Chromatography, High Pressure Liquid , Onychomycosis/drug therapy , Antifungal Agents , Oils, Volatile/chemistry , Plant Extracts/therapeutic use , Administration, Topical
3.
J Mol Model ; 29(6): 183, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37212923

ABSTRACT

CONTEXT: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the COVID-19 infection and responsible for millions of victims worldwide, remains a significant threat to public health. Even after the development of vaccines, research interest in the emergence of new variants is still prominent. Currently, the focus is on the search for effective and safe drugs, given the limitations and side effects observed for the synthetic drugs administered so far. In this sense, bioactive natural products that are widely used in the pharmaceutical industry due to their effectiveness and low toxicity have emerged as potential options in the search for safe drugs against COVID-19. Following this line, we screened 10 bioactive compounds derived from cholesterol for molecules capable of interacting with the receptor-binding domain (RBD) of the spike protein from SARS-CoV-2 (SC2Spike), responsible for the virus's invasion of human cells. Rounds of docking followed by molecular dynamics simulations and binding energy calculations enabled the selection of three compounds worth being experimentally evaluated against SARS-CoV-2. METHODS: The 3D structures of the cholesterol derivatives were prepared and optimized using the Spartan 08 software with the semi-empirical method PM3. They were then exported to the Molegro Virtual Docking (MVD®) software, where they were docked onto the RBD of a 3D structure of the SC2Spike protein that was imported from the Protein Data Bank (PDB). The best poses obtained from MVD® were subjected to rounds of molecular dynamics simulations using the GROMACS software, with the OPLS/AA force field. Frames from the MD simulation trajectories were used to calculate the ligand's free binding energies using the molecular mechanics - Poisson-Boltzmann surface area (MM-PBSA) method. All results were analyzed using the xmgrace and Visual Molecular Dynamics (VMD) software.


Subject(s)
Biological Products , COVID-19 , Humans , SARS-CoV-2 , Biological Products/pharmacology , Molecular Dynamics Simulation , Databases, Protein , Molecular Docking Simulation , Antiviral Agents/pharmacology
4.
Plants (Basel) ; 12(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36903915

ABSTRACT

Vegetable oils are among the most important traditional resources of Amazonia. Oleoresins are a type of oil that have interesting characteristics and highly bioactive properties with pharmacological potential. Oleoresins produced in the trunks of Copaifera (Fabaceae) spp. trees, known as copaiba oils, are made up of terpenes from the sesquiterpene (volatile) and diterpene (resinous) classes, but in amounts that vary between species and depending on several factors, such as soil type. Despite being used for medicinal purposes, via topical and oral application, the toxic effects of copaiba oils and their constituents are little known. The current paper reviews the toxicological studies, both in vitro and in vivo, described in the literature for copaiba oils, as well as the cytotoxic characteristics (against microorganisms and tumor cells) in in silico, in vitro and in vivo models for the sesquiterpenes and diterpenes that make up these oils.

5.
Curr Top Med Chem ; 21(22): 1999-2017, 2021.
Article in English | MEDLINE | ID: mdl-34225623

ABSTRACT

BACKGROUND: Natural products have been universally approached in the research of novel trends useful to detail the essential paths of the life sciences and as a strategy for pharmacotherapeutics. OBJECTIVE: This work focuses on further modification to the 6-hydroxy-flavanone building block aiming to obtain improved BCR-ABL kinase inhibitors. METHODS: Ether derivatives were obtained from Williamson synthesis and triazole from Microwave- assisted click reaction. Chemical structures were finely characterized through IR, 1H and 13C NMR and HRMS. They were tested for their inhibitory activity against BCR-ABL kinase. RESULTS: Two inhibitors bearing a triazole ring as a pharmacophoric bridge demonstrated the strongest kinase inhibition at IC50 value of 364 nM (compound 3j) and 275 nM (compound 3k). CONCLUSION: 6-hydroxy-flavanone skeleton can be considered as a promising core for BCR-ABL kinase inhibitors.


Subject(s)
Flavonoids/chemical synthesis , Flavonoids/pharmacology , Fusion Proteins, bcr-abl/antagonists & inhibitors , Molecular Dynamics Simulation , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology
6.
J Agric Food Chem ; 69(25): 6958-6967, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34152748

ABSTRACT

The semisynthesis of 15 new thymol derivatives was achieved through Williamson synthesis and copper-catalyzed azide-alkyne cycloaddition (CuAAC) approaches. The reaction of CuAAC using the "Click Chemistry" strategy, in the presence of an alkynyl thymol derivative and commercial or prepared azides, provided nine thymol derivatives under microwave irradiation. This procedure reduces reaction time and cost. All molecular entities were elucidated by 1H and 13C NMR, IR, and HRMS data. These derivatives were evaluated in vitro for their fungicidal activity against Fusarium solani sp. Among the nine triazolic thymol derivatives obtained, seven of them were found to have moderated antifungal activity. In contrast, naphthoquinone/thymol hybrid ether 2b displayed activity comparable with that of the commercial fungicide thiabendazole. The structure-activity relationship for the most active compound 2b was discussed, and the mode of action was predicted by a possible binding to the fungic ergosterol and interference of osmotic balance of K+ into the extracellular medium.


Subject(s)
Fungicides, Industrial , Fusarium , Alkynes , Antifungal Agents/pharmacology , Click Chemistry , Fungicides, Industrial/pharmacology , Thymol/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...