Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Rev Bras Parasitol Vet ; 28(3): 528-532, 2019 Aug 29.
Article in English | MEDLINE | ID: mdl-31483029

ABSTRACT

The nematicidal effect of different organic materials was evaluated in order to develop a non-chemical alternative soil treatment for control of the free-living stages of small ruminant gastrointestinal nematodes. The selected organic materials were residues from the juice industry of acerola, cashew, grape, guava, papaya and pineapple, as well as castor residue from the biodiesel industry. LC90 results showed that pineapple residue was the most efficient inhibitor of larval development, followed by castor, grape, cashew, acerola, guava and papaya. Castor residue was also a good source of nitrogen and was used in a greenhouse experiment to prevent larval development in contaminated goat faeces that was deposited in pots containing the grasses Brachiaria brizantha (var. Paiaguás) or Megathyrsus maximus x M. infestum (var. Massai). Castor residue caused a significant (P < 0.05) reduction (85.04%) in Paiaguás grass contamination (L3.dry mass-1) and a reduction of 17.35% in Massai grass contamination (P > 0.05), with an increase in the biomass production of Massai (251.43%, P < 0.05) and Paiaguás (109.19%, P > 0.05) grasses. This strategy, called Econemat®, with good results in vitro shows to be promising on pasture increasing phytomass production.


Subject(s)
Crop Production , Fruit and Vegetable Juices , Nematoda/drug effects , Plant Oils/pharmacology , Poaceae/parasitology , Refuse Disposal , Ricinus/chemistry , Animals , Ruminants
2.
Rev. bras. parasitol. vet ; 28(3): 528-532, July-Sept. 2019. tab, graf
Article in English | LILACS | ID: biblio-1042537

ABSTRACT

Abstract The nematicidal effect of different organic materials was evaluated in order to develop a non-chemical alternative soil treatment for control of the free-living stages of small ruminant gastrointestinal nematodes. The selected organic materials were residues from the juice industry of acerola, cashew, grape, guava, papaya and pineapple, as well as castor residue from the biodiesel industry. LC90 results showed that pineapple residue was the most efficient inhibitor of larval development, followed by castor, grape, cashew, acerola, guava and papaya. Castor residue was also a good source of nitrogen and was used in a greenhouse experiment to prevent larval development in contaminated goat faeces that was deposited in pots containing the grasses Brachiaria brizantha (var. Paiaguás) or Megathyrsus maximus x M. infestum (var. Massai). Castor residue caused a significant (P < 0.05) reduction (85.04%) in Paiaguás grass contamination (L3.dry mass-1) and a reduction of 17.35% in Massai grass contamination (P > 0.05), with an increase in the biomass production of Massai (251.43%, P < 0.05) and Paiaguás (109.19%, P > 0.05) grasses. This strategy, called Econemat®, with good results in vitro shows to be promising on pasture increasing phytomass production.


Resumo O efeito nematicida de diferentes materiais orgânicos foi avaliado, com o objetivo de desenvolver um tratamento alternativo não químico do solo para o controle dos estágios de vida livre de nematoides gastrintestinais de pequenos ruminantes. Os materiais orgânicos selecionados foram resíduos da indústria de suco de acerola, caju, uva, goiaba, mamão e abacaxi, além do resíduo de mamona da indústria de biodiesel. Os resultados da LC90 mostraram que o resíduo de abacaxi foi o mais eficiente inibidor do desenvolvimento larval, seguido pela mamona, uva, caju, acerola, goiaba e mamão. O resíduo de mamona também se mostrou uma boa fonte de nitrogênio, sendo usado em experimento em casa de vegetação para prevenir o desenvolvimento larval em fezes contaminadas, depositadas em vasos, contendo as gramíneas Brachiaria brizantha (var. Paiaguás) ou Megathyrsus maximus x M. infestum (var. Massai). O resíduo de mamona reduziu (85,04%) significativamente (P < 0,05) a contaminação no capim-Paiaguás (L3.dry massa-1), 17,35% no capim Massai (P> 0,05), e aumentou a produção de biomassa das gramíneas Massai (251,43%, P <0,05) e Paiaguás (109,19%, P> 0,05). Essa estratégia, chamada Econemat®, com bons resultados in vitro, mostra-se promissora nas pastagens aumentando a produção de fitomassa.


Subject(s)
Animals , Ricinus/chemistry , Plant Oils/poisoning , Refuse Disposal , Fruit and Vegetable Juices , Crop Production , Poaceae/parasitology , Nematoda/drug effects , Ruminants
3.
Zygote ; 25(3): 341-357, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28669364

ABSTRACT

This study aims to investigate the effect 5-azacytidine (5-Aza) during induction of pluripotency in bovine fibroblasts and to evaluate the effects of BMP2, BMP4 or follicular fluid in the differentiation of reprogrammed fibroblasts in primordial germ cells and oocytes. It also analysis the mRNA levels for OCT4, NANOG, REX, SOX2, VASA, DAZL, cKIT, SCP3, ZPA and GDF9 after culturing 5-Aza treated fibroblasts in the different tested medium. Dermal fibroblasts were cultured and exposed to 0.5, 1.0 or 2.0 µM of 5-Aza for 18 h, 36 h or 72 h. Then, the cells were cultured in DMEM/F12 supplemented with 10 ng/ml BMP2, 10 ng/ml BMP4 or 5% follicular fluid. After culture, morphological characteristics, viability and gene expression were evaluated by qPCR. Treatment of skin fibroblasts with 2.0 µM 5-Aza for 72 h significantly increased expression of mRNAs for SOX2, OCT4, NANOG and REX. The culture in medium supplemented with BMP2, BMP4 or follicular fluid for 7 or 14 days induced formation of oocyte-like cells, as well as the expression of markers for germ cells and oocyte. In conclusion, treatment of bovine skin-derived fibroblasts with 2.0 µM 5-Aza for 72 h induces the expression of pluripotency factors. Culturing these cells in differentiation medium supplemented with BMP2, BMP4 or follicular fluid induces morphological changes and promotes expression of markers for germ cells, meiosis and oocyte.


Subject(s)
Azacitidine/pharmacology , Cell Differentiation/drug effects , Fibroblasts/cytology , Fibroblasts/physiology , Genetic Markers/genetics , Animals , Bone Morphogenetic Protein 2/pharmacology , Bone Morphogenetic Protein 4/pharmacology , Cattle , Cell Differentiation/genetics , Culture Media/chemistry , Culture Media/pharmacology , DEAD-box RNA Helicases/genetics , Female , Fibroblasts/drug effects , Follicular Fluid/physiology , Pluripotent Stem Cells/physiology , Skin/cytology , Skin/embryology , Zona Pellucida Glycoproteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...