Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Antibiotics (Basel) ; 12(2)2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36830240

ABSTRACT

The effects of extracts, fractions, and molecules of Casearia sylvestris to control the cariogenic biofilm of Streptococcus mutans were evaluated. First, the antimicrobial and antibiofilm (initial and pre-formed biofilms) in prolonged exposure (24 h) models were investigated. Second, formulations (with and without fluoride) were assessed for topical effects (brief exposure) on biofilms. Third, selected treatments were evaluated via bacterium growth inhibition curves associated with gene expression and scanning electron microscopy. In initial biofilms, the ethyl acetate (AcOEt) and ethanolic (EtOH) fractions from Brasília (BRA/DF; 250 µg/mL) and Presidente Venceslau/SP (Water/EtOH 60:40 and Water/EtOH 40:60; 500 µg/mL) reduced ≥6-logs vs. vehicle. Only the molecule Caseargrewiin F (CsF; 125 µg/mL) reduced the viable cell count of pre-formed biofilms (5 logs vs. vehicle). For topical effects, no formulation affected biofilm components. For the growth inhibition assay, CsF yielded a constant recovery of surviving cells (≅3.5 logs) until 24 h (i.e., bacteriostatic), and AcOEt_BRA/DF caused progressive cell death, without cells at 24 h (i.e., bactericidal). CsF and AcOEt_BRA/DF damaged S. mutans cells and influenced the expression of virulence genes. Thus, an effect against biofilms occurred after prolonged exposure due to the bacteriostatic and/or bactericidal capacity of a fraction and a molecule from C. sylvestris.

2.
J Vis Exp ; (169)2021 03 31.
Article in English | MEDLINE | ID: mdl-33871449

ABSTRACT

Natural products provide structurally different substances, with a myriad of biological activities. However, the identification and isolation of active compounds from plants are challenging because of the complex plant matrix and time-consuming isolation and identification procedures. Therefore, a stepwise approach for screening natural compounds from plants, including the isolation and identification of potentially active molecules, is presented. It includes the collection of the plant material; preparation and fractionation of crude extracts; chromatography and spectrometry (UHPLC-DAD-HRMS and NMR) approaches for analysis and compounds identification; bioassays (antimicrobial and antibiofilm activities; bacterial "adhesion strength" to the salivary pellicle and initial glucan matrix treated with selected treatments); and data analysis. The model is simple, reproducible, and allows high-throughput screening of multiple compounds, concentrations, and treatment steps can be consistently controlled. The data obtained provide the foundation for future studies, including formulations with the most active extracts and/or fractions, isolation of molecules, modeling molecules to specific targets in microbial cells and biofilms. For example, one target to control cariogenic biofilm is to inhibit the activity of Streptococcus mutans glucosyltransferases that synthesize the extracellular matrix' glucans. The inhibition of those enzymes prevents the biofilm build-up, decreasing its virulence.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Dental Caries/prevention & control , Plant Extracts/chemistry , Biological Products
3.
BMC Complement Altern Med ; 19(1): 308, 2019 Nov 12.
Article in English | MEDLINE | ID: mdl-31718633

ABSTRACT

BACKGROUND: Dental caries is a biofilm-diet-dependent worldwide public health problem, and approaches against microorganisms in cariogenic biofilms are necessary. METHODS: The antimicrobial and antibiofilm activities of 12 Casearia sylvestris extracts (0.50 mg/mL) from different Brazilian biomes (Atlantic Forest, Cerrado, Caatinga, Pampa, and Pantanal) and varieties (sylvestris, lingua, and intermediate) were tested against two species found in cariogenic biofilms (Streptococcus mutans and Candida albicans). The extracts effective against S. mutans were used to evaluate the "adhesion strength" of this bacterium to the salivary pellicle and initial glucan matrix and the S. mutans-GtfB activity. Also, the antimicrobial activity against S. mutans of three fractions (methanol, ethyl acetate, and hexane; 0.25 mg/mL) from the extracts was evaluated. RESULTS: Three extracts from the Atlantic Forest variety sylvestris (FLO/SC, GUA/CE, PRE/SP) reduced ≥50% (> 3 logs) S. mutans viable population (p < 0.0001 vs. vehicle), while two extracts from the same biome and variety (PAC/CE, PRE/SP) decreased ≥50% of the viable counts of C. albicans (p < 0.0001 vs. vehicle). For S. mutans biofilms, three extracts (GUA/CE, PAC/CE, PRE/SP) reduced the biomass by ≥91% (p > 0.0001 vs. vehicle) and 100% of the microbial population (p < 0.0001 vs. vehicle). However, for the fungal biofilm, two extracts (PAC/CE, PRE/SP) reduced the viable counts by ≥52% (p < 0.0001 vs. vehicle), but none reduced biomass. The extracts with higher antimicrobial and antibiofilm activities presented higher content of clerodane-type diterpenes and lower content of glycosylated flavonoids than the less active extracts. The extracts had no effect on the removal of cells adhered to the pellicle (p > 0.05 vs. vehicle) while promoted the detachment of a larger number of S. mutans cells from GtfB-glucan matrix (p < 0.0031 vs. vehicle), and FLO/SC, GUA/CE and PRE/SP reduced the quantity of glucans (p < 0.0136 vs. vehicle). Only the ethyl acetate fractions reduced the microbial population of S. mutans (p < 0.0001 vs. vehicle), except for one (PAC/CE). Among the ethyl acetate fractions, three from var. lingua (two from Cerrado, and one from Cerrado/Caatinga) reduced ≥83% of the microbial population. CONCLUSIONS: C. sylvestris extracts from Atlantic Forest var. sylvestris and ethyl acetate fractions from Cerrado and Cerrado/Caatinga var. lingua may be used as a strategy against cariogenic microorganisms.


Subject(s)
Anti-Infective Agents/pharmacology , Candida albicans/drug effects , Casearia/chemistry , Dental Caries/microbiology , Plant Extracts/pharmacology , Streptococcus mutans/drug effects , Biofilms/drug effects , Brazil , Candida albicans/physiology , Ecosystem , Humans , Microbial Sensitivity Tests , Streptococcus mutans/physiology
SELECTION OF CITATIONS
SEARCH DETAIL