Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Chem Neuroanat ; 32(1): 1-27, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16820278

ABSTRACT

Considering the influence of the substantia nigra on mesencephalic neurons involved with fear-induced reactions organized in rostral aspects of the dorsal midbrain, the present work investigated the topographical and functional neuroanatomy of similar influence on caudal division of the corpora quadrigemina, addressing: (a) the neural hodology connecting the neostriatum, the substantia nigra, periaqueductal gray matter and inferior colliculus (IC) neural networks; (b) the influence of the inhibitory neostriatonigral-nigrocollicular GABAergic links on the control of the defensive behavior organized in the IC. The effects of the increase or decrease of activity of nigrocollicular inputs on defensive responses elicited by either electrical or chemical stimulation of the IC were also determined. Electrolytic or chemical lesions of the substantia nigra, pars reticulata (SNpr), decreased the freezing and escape behaviors thresholds elicited by electrical stimulation of the IC, and increased the behavioral responses evoked by the GABAA blockade in the same sites of the mesencephalic tectum (MT) electrically stimulated. These findings were corroborated by similar effects caused by microinjections of the GABAA-receptor agonist muscimol in the SNpr, followed by electrical and chemical stimulations of the IC. The GABAA blockade in the SNpr caused a significant increase in the defensive behavior thresholds elicited by electrical stimulation of the IC and a decrease in the mean incidence of panic-like responses induced by microinjections of bicuculline in the mesencephalic tectum (inferior colliculus). These findings suggest that the substantia nigra receives GABAergic inputs that modulate local and also inhibitory GABAergic outputs toward the IC. In fact, neurotracing experiments with fast blue and iontophoretic microinjections of biotinylated dextran amine either into the inferior colliculus or in the reticular division of the substantia nigra demonstrated a neural link between these structures, as well as between the neostriatum and SNpr.


Subject(s)
Brain Mapping , Brain/anatomy & histology , Brain/physiology , Emotions/physiology , Neural Pathways/cytology , gamma-Aminobutyric Acid/metabolism , Animals , Electrophysiology , Immunohistochemistry , Male , Neurons/cytology , Neurons/metabolism , Rats , Rats, Wistar
2.
Aquat Toxicol ; 77(1): 98-104, 2006 Apr 20.
Article in English | MEDLINE | ID: mdl-16360892

ABSTRACT

Lead (Pb2+) is a neurotoxic trace metal, widespread in aquatic environment that can change physiologic, biochemical and behavioral parameters in diverse fish species. Chemical exposure may drive modulation of mitogen-activated protein kinases (MAPKs) that are a family of highly conserved enzymes which comprise ubiquitous groups of signaling proteins playing critical regulatory roles in cell physiology. Extracellular signal-regulated kinases (ERK1/2) and p38(MAPK) control complex programs such as gene expression, embryogenesis, cell differentiation, cell proliferation, cell death and synaptic plasticity. Little information is available about MAPKs in aquatic organisms and their modulation by trace metals. The aim of this work was to determine the modulation of ERK1/2 and p38(MAPK) phosphorylation by Pb2+ in vivo and in vitro, in cerebellar slices of the catfish, Rhamdia quelen. In the in vitro model, slices were incubated for 3 h with lead acetate (1-10 microM). In the in vivo studies, the animals were exposed for 2 days to lead acetate (1 mg L(-1)). ERK1/2 and p38(MAPK) (total and phosphorylated forms) were immunodetected in cerebellar slices by Western blotting. Pb2+ added in vitro at 5 and 10 microM increased significantly the phosphorylation of both MAPKs. The in vivo exposed animals also showed a significant increase of ERK1/2 and p38(MAPK) phosphorylation without changes in the total content of the enzymes. In conclusion, the present work indicates that it is possible to evaluate the ERK1/2 and p38(MAPK) activation in the central nervous system (CNS) of a freshwater fish largely distributed in South America. Moreover, Pb2+, an important environmental pollutant may activate in vitro and in vivo ERK1/2 and p38(MAPK) enzymes. These findings are important considering the functional and ecologic implications associated to Pb2+ exposure of a freshwater fish species, such as R. quelen, and the roles of ERK1/2 and p38(MAPK) in the control of brain development, neuroplasticity and cell death.


Subject(s)
Catfishes/metabolism , Cerebellum/drug effects , Mitogen-Activated Protein Kinase 3/drug effects , Organometallic Compounds/toxicity , Water Pollutants, Chemical/toxicity , p38 Mitogen-Activated Protein Kinases/drug effects , Animals , Blotting, Western/veterinary , Cerebellum/enzymology , Environmental Exposure , Mitogen-Activated Protein Kinase 3/biosynthesis , Organometallic Compounds/administration & dosage , p38 Mitogen-Activated Protein Kinases/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL