Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Biologicals ; 37(4): 252-8, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19467885

ABSTRACT

The thermostability (TS) and efficacy offered by live vaccines against Newcastle disease strains B1, La Sota, VG-GA and Ulster, produced or imported by four Brazilian laboratories, were evaluated during their validity period. Kinetic profiles were obtained from samples conserved in refrigerators during 0, 4, 8, 12, 16, 20 and 24 months after their manufacturing. The statistical analysis of the vaccine titre effect obtained by the fresh air (FA) method showed that the vaccine profiles were parallel and coincident, presenting a significant descending trend. The vaccine titres and efficiency proofs at the end of the validity period were above the level of legislation requirements and showed an average loss in titre of 0.40 and 0.66 log(10,) within the first and second validity years, respectively. The titre obtained by TS, within the month after manufacturing, had no significant difference from the titre obtained by FA within 24 months after manufacturing, being their pairs of observations positively correlated (r=0.49, p=0.0003), showing that the TS method, which anticipates the vaccines' performance at the end of the validity period, can substitute the FA method 24 months after manufacturing.


Subject(s)
Newcastle Disease/prevention & control , Viral Vaccines/therapeutic use , Animals , Brazil , Chickens/blood , Chickens/immunology , Cold Temperature , Commerce , Drug Stability , Newcastle Disease/immunology , Newcastle Disease/mortality , Specimen Handling/adverse effects , Time Factors , Titrimetry , Treatment Outcome , Viral Vaccines/chemistry
2.
Braz. j. microbiol ; 40(1): 184-188, Jan.-Mar. 2009. ilus, tab
Article in English | LILACS | ID: lil-513139

ABSTRACT

S. Pullorum (SP) and S. Gallinarum (SG) are very similar. They are the agents of pullorum disease and fowl typhoid, respectively, and the two diseases are responsible for economic losses in poultry production. Although SP and SG are difficult to be differentiated in routine laboratory procedures, the ability to metabolize ornithine is a biochemical test that may be used to achieve this aim. While SP is able to decarboxylate this amino acid, SG is not. However, the isolation of strains showing atypical biochemical behavior has made this differentiation difficult. One of the genes associated with the metabolization of the amino acid ornithine is called speC, and is found in both serovars. The analysis of 21 SP and 15 SG strains by means of PCR did not enable the differentiation of the two serovars, because fragments produced were identical. However, after enzymatic treatment with restriction enzyme Eco RI, the band pattern of each serovar showed to be different, even in samples of atypical biochemical behavior. This fact enabled the standardization of the technique for a quick and safe differentiation of serovars Pullorum and Gallinarum.


A S. Pullorum (SP) é muito semelhante à S. Gallinarum (SG), agentes da Pulorose e Tifo aviário, respectivamente, sendo que as duas enfermidades são responsáveis por perdas econômicas no setor avícola. SP e SG são de difícil diferenciação em procedimento laboratorial rotineiro, mas uma prova bioquímica muito utilizada na distinção das duas refere-se à capacidade de assimilar o aminoácido ornitina: SP descarboxila este aminoácido enquanto SG não. No entanto, o isolamento de cepas com comportamento bioquímico atípico, tem dificultado tal diferenciação. Um dos genes relacionados à assimilação do aminoácido ornitina, denomina-se gene speC, o qual está presente nos dois sorovares. Analisando 21 amostras de SP e 15 de SG com a utilização da PCR não foi possível realizar a diferenciação dos dois sorovares pois os fragmentos gerados eram idênticos. Posteriormente, com o uso da técnica de tratamento enzimático com a enzima de restrição Eco RI, foi possível observar que o padrão de bandas gerado em cada sorovar era diferente, mesmo quando amostras que apresentavam comportamento bioquímico atípico eram analisadas. Tal fato permitiu a padronização da técnica para ser utilizada na diferenciação entre os sorovares Pullorum e Gallinarum de maneira rápida e segura.


Subject(s)
Animals , Poultry , Salmonella Infections , Salmonella enterica/genetics , Salmonella enterica/isolation & purification , Methods , Poultry Products , Diagnostic Techniques and Procedures
3.
Braz J Microbiol ; 40(1): 184-8, 2009 Jan.
Article in English | MEDLINE | ID: mdl-24031341

ABSTRACT

S. Pullorum (SP) and S. Gallinarum (SG) are very similar. They are the agents of pullorum disease and fowl typhoid, respectively, and the two diseases are responsible for economic losses in poultry production. Although SP and SG are difficult to be differentiated in routine laboratory procedures, the ability to metabolize ornithine is a biochemical test that may be used to achieve this aim. While SP is able to decarboxylate this amino acid, SG is not. However, the isolation of strains showing atypical biochemical behavior has made this differentiation difficult. One of the genes associated with the metabolization of the amino acid ornithine is called speC, and is found in both serovars. The analysis of 21 SP and 15 SG strains by means of PCR did not enable the differentiation of the two serovars, because fragments produced were identical. However, after enzymatic treatment with restriction enzyme Eco RI, the band pattern of each serovar showed to be different, even in samples of atypical biochemical behavior. This fact enabled the standardization of the technique for a quick and safe differentiation of serovars Pullorum and Gallinarum.

SELECTION OF CITATIONS
SEARCH DETAIL
...