Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Environ Manage ; 360: 121102, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759561

ABSTRACT

Marine protected areas (MPAs) are zones geographically delimited under pre-defined management goals, seeking to reduce anthropogenic threats to biodiversity. Despite this, in recent years reports of MPAs affected by chemical contamination has grown. Therefore, this study addresses this critical issue assessing legacy and current chemical contamination in filter-feeder bivalves obtained in very restrictive no-take MPAs from Brazil. The detected pollutants encompass polycyclic aromatic hydrocarbons (PAHs), linear alkylbenzenes (LABs), and persistent organic pollutants (POPs) like dichlorodiphenyltrichloroethane (DDTs) and polychlorinated biphenyls (PCBs). Despite protective measures, bivalves from nine MPAs exhibited high LABs (13.2-1139.0 ng g-1) and DDTs levels (0.1-62.3 ng g-1). PAHs were present in low concentrations (3.1-29.03 ng g-1), as PCBs (0.7-6.4 ng g-1), hexachlorobenzene (0.1-0.2 ng g-1), and Mirex (0.1-0.3 ng g-1). Regardless of the sentinel species, MPAs and management categories, similar accumulation patterns were observed for LABs, DDTs, PAHs, and PCBs. Based on the limits proposed by Oslo Paris Commission, the measured levels of PAHs, PCBs and were below the environmental assessment criteria. Such findings indicate the no biological effects are expected to occur. However, they are higher considering background conditions typically measured in remote or pristine areas and potential simultaneous exposure. Such findings indicate an influence of anthropogenic sources, emphasizing the urgency for monitoring programs guiding strategic management efforts to safeguard these areas.


Subject(s)
Bivalvia , Environmental Monitoring , Polychlorinated Biphenyls , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , Brazil , Polycyclic Aromatic Hydrocarbons/analysis , Polychlorinated Biphenyls/analysis , Water Pollutants, Chemical/analysis , Persistent Organic Pollutants
2.
Mar Pollut Bull ; 201: 116203, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38422825

ABSTRACT

Microplastic pollution is becoming a continuously growing environmental concern, while bivalve mollusks are particularly vulnerable due to their sessile habits and feeding through water filtration processes. Microplastic incidence in soft tissues of the clam Amarilladesma mactroides was assessed along unconsolidated substrates distributed in extensive coastal regions of southern Brazil. Influence of urbanization levels, distance to rivers and local hydrodynamics on microplastic accumulation by the clam was tested. The average concentration of microplastics was high (3.09 ± 2.11 particles.g-1), considering 16 sampled sites. Particles were mainly composed by polyamide, polyethylene and polyethylene terephthalate, while were mainly smaller, fibrous and colorless. High urbanization and closer proximity to rivers insured higher contamination, which is a trend observed globally. No influence of coastal hydrodynamics was seen. Considering obtained findings, A. mactroides presents good potential to be used as a valuable tool to assess microplastic contamination in unconsolidated substrates of beach areas.


Subject(s)
Bivalvia , Water Pollutants, Chemical , Animals , Microplastics , Plastics , Brazil , Water Pollutants, Chemical/analysis , Environmental Monitoring
3.
J Hazard Mater ; 468: 133839, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38402681

ABSTRACT

The contamination of coastal ecosystems by personal protective equipment (PPE) emerged as a significant concern immediately following the declaration of the COVID-19 pandemic by the World Health Organization (WHO). Hence, numerous studies have assessed PPE occurrence on beaches worldwide. However, no predictors on PPE contamination was so far pointed out. The present study investigated social and landscape drivers affecting the PPE density in coastal environments worldwide using a meta-analysis approach. Spatial variables such as urban modification levels, coastal vegetation coverage, population density (HPD), distance from rivers (DNR), and poverty degree (GGRDI) were derived from global satellite data. These variables, along with the time elapsed after WHO declared the pandemic, were included in generalized additive models as potential predictors of PPE density. HPD consistently emerged as the most influential predictor of PPE density (p < 0.00001), exhibiting a positive effect. Despite the presence of complex non-linear relationships, our findings indicate higher PPE density in areas with intermediate GGRDI levels, indicative of emerging economies. Additionally, elevated PPE density was observed in areas located further away from rivers (p < 0.001), and after the initial months of the pandemic. Despite the uncertainties associated with the varied sampling methods employed by the studies comprising our database, this study offers a solid baseline for tackling the global problem of PPE contamination on beachesguiding monitoring assessments in future pandemics.


Subject(s)
COVID-19 , Pandemics , Humans , Pandemics/prevention & control , Ecosystem , Infectious Disease Transmission, Patient-to-Professional , Health Personnel , COVID-19/epidemiology , COVID-19/prevention & control , Personal Protective Equipment
4.
Environ Pollut ; 346: 123571, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38373623

ABSTRACT

Microplastics (MPs) accumulation in rocky shore organisms has limited knowledge. This study investigated MPs accumulation in filter-feeding oysters, herbivorous limpets and carnivorous snails to assess their performance as sentinel species in the MPs trophic transfer. The samples were obtained along a contamination gradient in the Santos Estuarine System, Brazil. All three studied species showed MPs concentrations related to the contamination gradient, being the oysters the species that showed the highest levels, followed by limpets and snails (average of less and most contaminated sites of 1.06-8.90, 2.28-5.69 and 0.44-2.10 MP g-1, respectively), suggesting that MPs ingestion rates are linked to feeding habits. MPs were mainly polystyrene and polyacetal. The polymer types did not vary among sites nor species. Despite minor differences in percentages and diversity of size, shape, and color classes, the analyzed species were equally able to demonstrate dominance of small, fiber, transparent, black and blue MPs. Thus, oysters, limpets, and snails are proposed as sentinels of MPs in monitoring assessments.


Subject(s)
Gastropoda , Ostreidae , Water Pollutants, Chemical , Animals , Microplastics , Plastics , Water Pollutants, Chemical/analysis , Environmental Monitoring
5.
Mar Pollut Bull ; 200: 116045, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38266479

ABSTRACT

The contamination of mangroves by anthropogenic litter has increased in recent decades. Notably, Brazil occupies a prominent status within Latin America, boasting the second-largest mangrove areas globally. In Santos-São Vicente Estuarine System (SESS), mangroves coexist with a preeminent port complex and substantial urbanization rates. Nevertheless, the anthropogenic litter occurrence and distribution in this ecosystem remains unknown. This study aimed to comprehensively assess anthropogenic litter across 13 strategically positioned sites in the SESS. The total litter density (Mean ± SD) was 22.84 ± 36.47 (0.00-142.00) items·m-2, putting the SESS among the top four most contaminated mangrove ecosystems worldwide. Residential zones accumulated more litter than uninhabited areas and significant correlation was seen with human modification index. Plastic was the prevalent material (70.4 %), measuring mostly between 2.5 and 30 cm (41.1 %). It is imperative that local authorities adopt comprehensive strategies to mitigate contamination, while also curtailing the litter inputs to the SSES mangrove ecosystem.


Subject(s)
Ecosystem , Environmental Monitoring , Humans , Brazil , Urbanization , Plastics
6.
Environ Sci Pollut Res Int ; 30(27): 71396-71408, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37199842

ABSTRACT

Peru suffers from poor solid waste and coastal management, as well as evidenced plastic pollution in various forms. However, studies in Peru focusing on small plastic debris (i.e., meso- and microplastics) are still limited and inconclusive. Thus, the present study investigated the abundance, characteristics, seasonality, and distribution of small plastic debris along the coast of Peru. The abundance of small plastic debris is predominantly driven by specific locations, where a source of contamination is present, rather than presenting seasonal patterns. Meso- and microplastics were strongly correlated in both seasons (summer and winter), suggesting meso-plastic constantly breaking down as microplastic sources. Additionally, heavy metals (e.g., Cu, Pb) were found in low concentrations (mean concentrations < 0.4%) on the surface of some mesoplastics. Here, we provided a baseline on the multiple factors involving small plastic debris on the Peruvian coast and preliminarily identify associated contaminants.


Subject(s)
Microplastics , Water Pollutants, Chemical , Plastics , Peru , Waste Products/analysis , Environmental Monitoring , Solid Waste , Water Pollutants, Chemical/analysis
7.
Mar Pollut Bull ; 191: 114941, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37080019

ABSTRACT

Marine litter is a complex environmental issue threatening the well-being of multiple organisms. In the present study, we present an overlooked pathway by which marine litter interaction with certain ovigerous skates (Family: Rajidae) communities could compromise their survival. We propose that skates from the genus Sympterygia deposit their egg capsules on marine litter substrates by accident, which are then washed ashore still unhatched. We conducted 10 monitoring surveys on three beaches of La Libertad Region, on the north coast of Peru, looking for marine litter conglomerates to determine the presence of egg capsules. We registered a total of 75 marine litter conglomerates, containing 1595 egg capsules, out of which only 15.9 % were presumably hatched, and 15.8 % were still fresh. Fishing materials were identified as the main item in marine litter conglomerates. We conclude that this behavior could contribute to the decline of Sympterygia communities, although further research is needed.


Subject(s)
Environmental Monitoring , Waste Products , Waste Products/analysis , Capsules , Plastics , Hunting , Bathing Beaches
8.
Sci Total Environ ; 874: 162468, 2023 May 20.
Article in English | MEDLINE | ID: mdl-36858238

ABSTRACT

Filter-feeder organisms such as oyster and mussels are exposed to particles like microplastics (MPs). Although widely used to monitor MPs contamination, little is known about their performance as sentinels, which are biological monitors accumulating contaminants without significant adverse effects. This study comparatively evaluated the quantitative and qualitative accumulation of MPs by oysters (Crassostrea brasiliana) and mussels (Perna perna) along a gradient of contamination in a highly urbanized estuarine system of Brazil. In the most contaminated site, both species presented the worst status of nutrition and health, and also one of the highest MPs levels reported for molluscs to date (up to 44.1 particles·g-1). Despite some inter-specific differences, oysters and mussels were suitable and showed an equivalent performance as sentinels, reflecting the gradient condition demonstrated for other contaminants in the region. The similarity in MPs accumulation was also observed for qualitative aspects (polymer composition, sizes, shapes and colors). Particles were mostly <1000 µm, fibrous, colorless and composed by cellulose and polymethyl methacrylate (PMMA). Thus, despite small variations, the usage of C. brasiliana and P. perna is recommended and provides reliable information for environmental levels of microplastics.


Subject(s)
Crassostrea , Water Pollutants, Chemical , Animals , Microplastics , Plastics , Water Pollutants, Chemical/analysis , Seafood/analysis , Environmental Monitoring
9.
Environ Pollut ; 316(Pt 1): 120692, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36402421

ABSTRACT

Despite the relatively rich literature on the omnipresence of microplastics in marine environments, the current status and ecological impacts of microplastics on global Marine Protected Areas (MPAs) are still unknown. Their ubiquitous occurrence, increasing volume, and ecotoxicological effects have made microplastic an emerging marine pollutant. Given the critical conservation roles of MPAs that aim to protect vulnerable marine species, biodiversity, and resources, it is essential to have a comprehensive overview of the occurrence, abundance, distribution, and characteristics of microplastics in MPAs including their buffer zones. Here, extensive data were collected and screened based on 1565 peer-reviewed literature from 2017 to 2020, and a GIS-based approach was applied to improve the outcomes by considering boundary limits. Microplastics in seawater samples were verified within the boundaries of 52 MPAs; after including the buffer zones, 1/3 more (68 MPAs) were identified as contaminated by microplastics. A large range of microplastic levels in MPAs was summarized based on water volume (0-809,000 items/m3) or surface water area (21.3-1,650,000,000 items/km2), which was likely due to discrepancy in sampling and analytical methods. Fragment was the most frequently observed shape and fiber was the most abundant shape. PE and PP were the most common and also most abundant polymer types. Overall, 2/3 of available data reported that seawater microplastic levels in MPAs were higher than 12,429 items/km2, indicating that global MPAs alone cannot protect against microplastic pollution. The current limitations and future directions were also discussed toward the post-2020 Global Biodiversity Framework goals.


Subject(s)
Microplastics , Water Pollutants, Chemical , Plastics , Seawater , Biodiversity , Water , Environmental Monitoring , Water Pollutants, Chemical/analysis
10.
Environ Res ; 213: 113730, 2022 10.
Article in English | MEDLINE | ID: mdl-35732200

ABSTRACT

Environmental impacts are currently linked to smoking cigarette behavior, as cigarette butts (CBs) represent the most common litter item in natural areas. Despite this, even the best ranked Brazilian cities, in terms of urban cleaning, have no information about urban littered CBs. Thus, CBs were monitored in Santos and Niterói cities, aiming to assess contamination, Cigarette Butt Pollution Index (CBPI) and the illegal market size. CBs were collected in 36 walkways considering different land usage types and urban density levels. The CBPI was calculated, and brands were used to identify the size of the illegal market. CBs contamination in Santos (0.25 CBs/m2) was three times higher than Niterói (0.08 CBs/m2) and their occurrence and distribution presented no relationship with land usage types and urban population densities levels. CBPI = 17.6 was severe and the highest so far reported. A total of 28 cigarette brands were found both studied cities. Further, illegal cigarette consumption in Santos and Niteroi was estimated, based on brands of collected CBs, at 25.2% and 36.8%, respectively. Such data may be valuable for implementation of logistic reverse actions seeking to environmentally sustainable and socially resilient cities. Cigarette consumption threatens human life and the environment, and tobacco companies should be accountable for the pollution they generate.


Subject(s)
Tobacco Products , Brazil , Cities , Demography , Humans , Smoking
11.
Sci Total Environ ; 833: 155179, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35421485

ABSTRACT

Beaches in the Anthropocene carry the heavy burden of human-derived pollution, like that induced by plastic litter. For decades, plastic debris has been classified based on its source or physical size. In recent years, studies described and documented new forms of plastic formations, including plastiglomerates, plasticrusts, and pyroplastics. However, reports of these newly described formations are substantially lacking. Therefore, in the present study, we reported the first evidence of plasticrusts (plastic encrusting rock surfaces), plastiglomerates (organic/inorganic composite materials in a plastic matrix), and pyroplastics (burned and weathered plastics) in Peru. The plastic pollutants were recovered from the field through marine litter surveys on four beaches where illegal litter burning and campfires take place. All the suspected plastic formations were analyzed and confirmed using Fourier transformed infrared (FTIR) spectroscopy, and one of each type was analyzed by X-Ray fluorescence (EDX) spectrometry. Plastiglomerates consisted of a high-density polyethylene (HDPE) or polypropylene (PP) matrix with rock and sand inclusions. Pyroplastics were found in various stages of weathering and consisted of various polymers, including HDPE, PP, polyethylene terephthalate (PET), and polyamide (PA). Interestingly, our field observations suggest a new plasticrust formation pathway based on plastic burning and filling of rock crevices with molten plastic. The latter was identified as either PP or HDPE. Elements typically found in the sand and seawater (e.g., Na, Cl, Ca, Si, Fe) were identified on the surface of the plastic formations, as well as others that could potentially be associated with the leaching of additives (e.g., Ti, Br). Although the present study contributed to the knowledge concerning the occurrence of the new types of plastic formations, as well as possible formation pathways, there are still many questions to answer. Hence, we encourage future studies to focus on the toxicity that new plastic formations may induce in contrast with conventional plastics, the release of secondary contaminants (e.g., microplastics, additives), and their degradation in the environment. Lastly, standardized sampling and data treatment protocols are required.


Subject(s)
Plastics , Water Pollutants, Chemical , Environmental Monitoring , Humans , Plastics/analysis , Polyethylene/analysis , Polypropylenes/analysis , Sand , Waste Products/analysis , Water Pollutants, Chemical/analysis
12.
J Coast Conserv ; 26(2): 8, 2022.
Article in English | MEDLINE | ID: mdl-35370451

ABSTRACT

The Aegean Sea is one of the most contaminated by marine litter (ML) in the World. In this study, the Turkish Aegean Region was evaluated in light of the sources, abundance and composition of ML along Çakalburnu Lagoon coast. Macroscopic ML with > 3 cm was collected and separated into composition and sources categories. ML abundance was calculated by its density in items/m2 (Mean ± SD). Beach cleanliness was evaluated according to Clean-Coast Index (CCI). Seasonality was found as factor for ML composition, sources and abundance at Çakalburnu coast. Plastic was the most abundant material, followed by unidentifiable items. The major sources of ML were mixed packaging, domestic and fisheries activities. The mean ML density was 0.64 ± 0.09 items/m2. Çakalburnu coast was classified as dirty during all seasons. Therefore, ML contamination on Çakalburnu coast represent a potential threat to coastal and marine environments. Thus, the present study can serve as a base for the elaboration of mitigating actions urgently needed at Çakalburnu Lagoon.

13.
Mar Pollut Bull ; 177: 113522, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35299146

ABSTRACT

This study aimed to report personal protective equipment (PPE) contamination in Santos beaches (Brazil) using standardized procedures for the first time while comparing two periods to understand the progression of PPE contamination. The occurrence of PPE items was ubiquitous in all sampled sites, although the densities were relatively low compared to those in other parts of the world. Unlike previous studies, reusable face masks were the most common type of PPE. PPE density in the studied areas was similar in both sampling seasons, probably because of the influence of tourism, urbanization, and local hydrodynamic aspects. PPE items can release microfibers into the aquatic environment and pose entanglement hazards to marine biota. A wider monitoring of PPE pollution, accompanied by surveys on PPE usage and behavior, as well as chemical characterization of the discarded PPE items, is needed to fully understand this unprecedented form of plastic pollution.


Subject(s)
COVID-19 , Personal Protective Equipment , Brazil , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...