Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Front Microbiol ; 15: 1426166, 2024.
Article in English | MEDLINE | ID: mdl-38989019

ABSTRACT

Phosphorus (P) is a critical nutrient for plant growth, yet its uptake is often hindered by soil factors like clay minerals and metal oxides such as aluminum (Al), iron (Fe), and calcium (Ca), which bind P and limit its availability. Phosphate-solubilizing bacteria (PSB) have the unique ability to convert insoluble P into a soluble form, thereby fostering plant growth. This study aimed to assess the efficacy of inoculation of Bacillus megaterium B119 (rhizospheric) and B. subtilis B2084 (endophytic) via seed treatment in enhancing maize yield, grain P content, and enzyme activities across two distinct soil types in field conditions. Additionally, we investigated various mechanisms contributing to plant growth promotion, compatibility with commercial inoculants, and the maize root adhesion profile of these strains. During five crop seasons in two experimental areas in Brazil, Sete Lagoas-MG and Santo Antônio de Goiás-GO, single inoculations with either B119 or B2084 were implemented in three seasons, while a co-inoculation with both strains was applied in two seasons. All treatments received P fertilizer according to plot recommendations, except for control. Both the Bacillus strains exhibited plant growth-promoting properties relevant to P dynamics, including phosphate solubilization and mineralization, production of indole-3-acetic acid (IAA)-like molecules, siderophores, exopolysaccharides (EPS), biofilms, and phosphatases, with no antagonism observed with Azospirillum and Bradyrizhobium. Strain B2084 displayed superior maize root adhesion compared to B119. In field trials, single inoculations with either B119 or B2084 resulted in increased maize grain yield, with relative average productivities of 22 and 16% in Sete Lagoas and 6 and 3% in Santo Antônio de Goiás, respectively. Co-inoculation proved more effective, with an average yield increase of 24% in Sete Lagoas and 11% in Santo Antônio de Goiás compared to the non-inoculated control. Across all seasons, accumulated grain P content correlated with yield, and soil P availability in the rhizosphere increased after co-inoculation in Santo Antônio de Goiás. These findings complement previous research efforts and have led to the validation and registration of the first Brazilian inoculant formulated with Bacillus strains for maize, effectively enhancing and P grain content.

2.
Arch Microbiol ; 204(2): 143, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35044594

ABSTRACT

Usage of Bacillus and Azospirillum as new eco-friendly microbial consortium inoculants is a promising strategy to increase plant growth and crop yield by improving nutrient availability in agricultural sustainable systems. In this study, we designed a multispecies inoculum containing B. thuringiensis (strain B116), B. subtillis (strain B2084) and Azospirillum sp. (strains A1626 and A2142) to investigate their individual or co-inoculated ability to solubilize and mineralize phosphate, produce indole acetic acid (IAA) and their effect on maize growth promotion in hydroponics and in a non-sterile soil. All strains showed significant IAA production, P mineralization (sodium phytate) and Ca-P, Fe-P (tricalcium phosphate and iron phosphate, respectively) solubilization. In hydroponics, co-inoculation with A1626 x A2142, B2084 x A2142, B2084 x A1626 resulted in higher root total length, total surface area, and surface area of roots with diameter between 0 and 1 mm than other treatments with single inoculant, except B2084. In a greenhouse experiment, maize inoculated with the two Azospirillum strains exhibited enhanced shoot dry weight, shoot P and K content, root dry weight, root N and K content and acid and alkaline phosphatase activities than the other treatments. There was a significant correlation between soil P and P shoot, alkaline phosphatase and P shoot and between acid phosphatase and root dry weight. It may be concluded that co-inoculations are most effective than single inoculants strains, mainly between two selected Azospirillum strains. Thus, they could have synergistic interactions during maize growth, and be useful in the formulation of new inoculants to improve the tropical cropping systems sustainability.


Subject(s)
Azospirillum , Bacillus , Nutrients , Plant Roots , Soil Microbiology , Zea mays
3.
Braz J Microbiol ; 49 Suppl 1: 40-46, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30150087

ABSTRACT

Bacterial endophytes are considered to have a beneficial effect on host plants, improving their growth by different mechanisms. The objective of this study was to investigate the capacity of four endophytic Bacillus strains to solubilize iron phosphate (Fe-P), produce siderophores and indole-acetic acid (IAA) in vitro, and to evaluate their plant growth promotion ability in greenhouse conditions by inoculation into pearl millet cultivated in a P-deficient soils without P fertilization, with Araxá rock phosphate or soluble triple superphosphate. All strains solubilized Fe-P and three of them produced carboxylate-type siderophores and high levels of IAA in the presence of tryptophan. Positive effect of inoculation of some of these strains on shoot and root dry weight and the N P K content of plants cultivated in soil with no P fertilization might result from the synergistic combination of multiple plant growth promoting (PGP) traits. Specifically, while B1923 enhanced shoot and root dry weight and root N P content of plants cultivated with no P added, B2084 and B2088 strains showed positive performance on biomass production and accumulation of N P K in the shoot, indicating that they have higher potential to be microbial biofertilizer candidates for commercial applications in the absence of fertilization.


Subject(s)
Bacillus/metabolism , Endophytes/metabolism , Nutrients/metabolism , Pennisetum/growth & development , Pennisetum/microbiology , Phosphates/metabolism , Bacillus/genetics , Endophytes/genetics , Indoleacetic Acids/metabolism , Iron/metabolism , Pennisetum/metabolism , Phosphates/analysis , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/microbiology , Siderophores/metabolism
4.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469639

ABSTRACT

Abstract Bacterial endophytes are considered to have a beneficial effect on host plants, improving their growth by different mechanisms. The objective of this study was to investigate the capacity of four endophytic Bacillus strains to solubilize iron phosphate (Fe-P), produce siderophores and indole-acetic acid (IAA) in vitro, and to evaluate their plant growth promotion ability in greenhouse conditions by inoculation into pearl millet cultivated in a P-deficient soils without P fertilization, with Araxá rock phosphate or soluble triple superphosphate. All strains solubilized Fe-P and three of them produced carboxylate-type siderophores and high levels of IAA in the presence of tryptophan. Positive effect of inoculation of some of these strains on shoot and root dry weight and the N P K content of plants cultivated in soil with no P fertilization might result from the synergistic combination of multiple plant growth promoting (PGP) traits. Specifically, while B1923 enhanced shoot and root dry weight and root N P content of plants cultivated with no P added, B2084 and B2088 strains showed positive performance on biomass production and accumulation of N P K in the shoot, indicating that they have higher potential to be microbial biofertilizer candidates for commercial applications in the absence of fertilization.

5.
Braz. j. microbiol ; 49(supl.1): 40-46, 2018. tab
Article in English | LILACS | ID: biblio-974339

ABSTRACT

Abstract Bacterial endophytes are considered to have a beneficial effect on host plants, improving their growth by different mechanisms. The objective of this study was to investigate the capacity of four endophytic Bacillus strains to solubilize iron phosphate (Fe-P), produce siderophores and indole-acetic acid (IAA) in vitro, and to evaluate their plant growth promotion ability in greenhouse conditions by inoculation into pearl millet cultivated in a P-deficient soils without P fertilization, with Araxá rock phosphate or soluble triple superphosphate. All strains solubilized Fe-P and three of them produced carboxylate-type siderophores and high levels of IAA in the presence of tryptophan. Positive effect of inoculation of some of these strains on shoot and root dry weight and the N P K content of plants cultivated in soil with no P fertilization might result from the synergistic combination of multiple plant growth promoting (PGP) traits. Specifically, while B1923 enhanced shoot and root dry weight and root N P content of plants cultivated with no P added, B2084 and B2088 strains showed positive performance on biomass production and accumulation of N P K in the shoot, indicating that they have higher potential to be microbial biofertilizer candidates for commercial applications in the absence of fertilization.


Subject(s)
Bacillus/metabolism , Food/metabolism , Pennisetum/growth & development , Pennisetum/microbiology , Endophytes/metabolism , Indoleacetic Acids/metabolism , Phosphates/analysis , Phosphates/metabolism , Bacillus/genetics , Siderophores/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/microbiology , Pennisetum/metabolism , Endophytes/genetics , Iron/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...