Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pediatr Infect Dis J ; 42(3): 212-217, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36728777

ABSTRACT

BACKGROUND: With the progression of the Coronavirus disease pandemic, the number of mutations in the viral genome has increased, showing the adaptive evolution of severe acute respiratory syndrome coronavirus 2 in humans and intensification in transmissibility. Long-term infections also allow the development of viral diversity. In this study, we report the case of a child with severe combined immu presenting a prolonged severe acute respiratory syndrome coronavirus 2 infection. We aimed to analyze 3 naso-oropharyngeal swab samples collected between August and December 2021 to describe the amino acid changes present in the sequence reads that may have a role in the emergence of new viral variants. METHODS: The whole genome from clinical samples was sequenced through high throughput sequencing and analyzed using a workflow to map reads and then find variations/single-nucleotide polymorphisms. In addition, the samples were isolated in cell culture, and a plaque forming units assay was performed, which indicates the presence of viable viral particles. RESULTS: The results obtained showed that the virus present in all samples is infectious. Also, there were 20 common mutations among the 3 sequence reads, found in the ORF1ab and ORF10 proteins. As well, a considerable number of uncommon mutations were found. CONCLUSIONS: In conclusion, we emphasize that genomic surveillance can be a useful tool to assess possible evolution signals in long-term patients.


Subject(s)
COVID-19 , Humans , Child , COVID-19/genetics , SARS-CoV-2/genetics , Mutation , Genome, Viral , High-Throughput Nucleotide Sequencing
2.
Viruses ; 12(7)2020 07 21.
Article in English | MEDLINE | ID: mdl-32708342

ABSTRACT

Oropouche orthobunyavirus (OROV) is an emerging arbovirus with a high potential of dissemination in America. Little is known about the role of peripheral blood mononuclear cells (PBMC) response during OROV infection in humans. Thus, to evaluate human leukocytes susceptibility, permissiveness and immune response during OROV infection, we applied RNA hybridization, qRT-PCR and cell-based assays to quantify viral antigens, genome, antigenome and gene expression in different cells. First, we observed OROV replication in human leukocytes lineages as THP-1 monocytes, Jeko-1 B cells and Jurkat T cells. Interestingly, cell viability and viral particle detection are maintained in these cells, even after successive passages. PBMCs from healthy donors were susceptible but the infection was not productive, since neither antigenome nor infectious particle was found in the supernatant of infected PBMCs. In fact, only viral antigens and small quantities of OROV genome were detected at 24 hpi in lymphocytes, monocytes and CD11c+ cells. Finally, activation of the Interferon (IFN) response was essential to restrict OROV replication in human PBMCs. Increased expression of type I/III IFNs, ISGs and inflammatory cytokines was detected in the first 24 hpi and viral replication was re-established after blocking IFNAR or treating cells with glucocorticoid. Thus, in short, our results show OROV is able to infect and remain in low titers in human T cells, monocytes, DCs and B cells as a consequence of an effective IFN response after infection, indicating the possibility of leukocytes serving as a trojan horse in specific microenvironments during immunosuppression.


Subject(s)
Bunyaviridae Infections/metabolism , Leukocytes, Mononuclear/virology , Orthobunyavirus , RNA, Viral/metabolism , Flow Cytometry , Fluorescent Antibody Technique , Genome, Viral/genetics , Humans , Microscopy, Confocal , Orthobunyavirus/genetics , Orthobunyavirus/metabolism , Orthobunyavirus/physiology , Real-Time Polymerase Chain Reaction , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...