Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Microvasc Res ; 139: 104253, 2022 01.
Article in English | MEDLINE | ID: mdl-34520773

ABSTRACT

Chalcones and sulfonamides are well-known chemical groups associated with several biological activities such as antibiotic, anti-inflammatory, and antitumor activities. Over the past few decades, a series of sulfonamide-chalcone hybrids have been synthesized and assessed to develop compounds with interesting biological properties for application in disease therapy. In the present study, a new sulfonamide-chalcone hybrid µ - (2,5-dichloro-N-{4-[(3E)-4-(3-nitrophenyl) buta-1,3-dien-2-yl] phenyl} benzene sulfonamide), or simply CL185, was synthesized, and its angiogenic activity was assessed using the chick embryo chorioallantoic membrane (CAM) assay at different concentrations (12.5, 25, and 50 µg/µL). To further investigate the role of CL185 in the angiogenic process, we evaluated the levels of vascular endothelial growth factor (VEGF) in all treated CAMs. The results showed that all concentrations of CL185 significantly increased tissue vascularization (p < 0.05) as well as the parameters associated with angiogenesis, in which inflammation was the most marked phenomenon observed. In all CAMs treated with CL185, VEGF levels were significantly higher than those in the negative control (p < 0.05), and at the highest concentration, VEGF levels were even higher than in the positive control (p < 0.05). The pronounced angiogenic activity displayed by CL185 may be related to the increase in VEGF levels that were stimulated by inflammatory processes observed in our study. Therefore, CL185 presents a favorable profile for the development of drugs that can be used in pro-angiogenic and tissue repair therapies.


Subject(s)
Angiogenesis Inducing Agents/pharmacology , Chalcones/pharmacology , Chorioallantoic Membrane/blood supply , Inflammation/metabolism , Neovascularization, Physiologic/drug effects , Vascular Endothelial Growth Factor A/metabolism , Angiogenesis Inducing Agents/toxicity , Animals , Chalcones/toxicity , Chick Embryo , Inflammation/chemically induced , Up-Regulation
2.
Article in English | MEDLINE | ID: mdl-33865545

ABSTRACT

Prednisone (PD) is one of the most commonly used corticosteroids in immunosuppressive therapy for patients with autoimmune diseases and transplants. Chronic use of corticosteroids is associated with several side effects and an increase in neoplasia. Since genotoxic effects are associated with an increased risk of cancer development, this study evaluated the genotoxic and cytotoxic activities of PD using the SMART/wing assay in Drosophila melanogaster and the micronucleus test and comet assay in mouse bone marrow cells. Further, the toxic effects of PD on mouse organ tissues were assessed using histopathological analyses. In the SMART/wing assay, PD showed a significant genotoxic activity at all concentrations tested (0.375, 0.75, 1.5, and 2.0 mg/mL) compared to the negative control (p < 0.05). The micronucleus test and comet assay also showed an elevated genotoxicity of PD at all treatment conditions (24, 48, and 120 h with doses ranging from 0.5 to 1.5 mg/kg) compared to the negative control (p < 0.05). The histopathological analyses did not show toxicity of PD in mouse cells and tissues. Therefore, our results demonstrate that PD is a potent genotoxic immunosuppressant in mice and D. melanogaster cells. Somatic recombination was the primary contributor (46%-82%) to the induced genotoxicity observed in the SMART test.


Subject(s)
DNA Damage/drug effects , Prednisone/adverse effects , Animals , Animals, Genetically Modified , Animals, Outbred Strains , Comet Assay , Drosophila melanogaster , Female , Male , Mice , Micronucleus Tests , Mutagenicity Tests/methods , Mutagens/toxicity
3.
Biomed Res Int ; 2018: 6056948, 2018.
Article in English | MEDLINE | ID: mdl-30370304

ABSTRACT

Silymarin (SM), a standardized extract derived from Silybum marianum (L.) Gaertn, is primarily composed of flavonolignans, with silibinin (SB) as its major active constituent. The present study aimed to evaluate the antigenotoxic activities of SM and SB using the alkaline comet assay in whole blood cells and to assess their effects on the expression of genes associated with carcinogenesis and chemopreventive processes. Different concentrations of SM or SB (1.0, 2.5, 5.0, and 7.5 mg/ml) were used in combination with the DNA damage-inducing agent methyl methanesulfonate (MMS, 800 µM) to evaluate their genoprotective potential. To investigate the role of SM and SB in modulating gene expression, we performed quantitative real-time PCR (qRT-PCR) analysis of five genes that are known to be involved in DNA damage, carcinogenesis, and/or chemopreventive mechanisms. Treatment with SM or SB was found to significantly reduce the genotoxicity of MMS, upregulate the expression of PTEN and BCL2, and downregulate the expression of BAX and ABL1. We observed no significant changes in ETV6 expression levels following treatment with SM or SB. In conclusion, both SM and SB exerted antigenotoxic activities and modulated the expression of genes related to cell protection against DNA damage.


Subject(s)
Blood Cells/drug effects , DNA Damage/drug effects , Protective Agents/pharmacology , Silybin/pharmacology , Silymarin/pharmacology , Antioxidants/pharmacology , Cells, Cultured , Cytoprotection/drug effects , Down-Regulation/drug effects , Flavonoids/pharmacology , Gene Expression/drug effects , Humans , Silybum marianum/chemistry , Up-Regulation/drug effects
4.
J Med Food ; 13(6): 1409-14, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21091254

ABSTRACT

Solanum lycocarpum A. St. Hill. (Family Solanaceae), popularly known in Brazil as lobeira, is a common weed in the Brazilian Cerrado vegetation. The fruits of this species have been used in Brazil for culinary purposes and in folk medicine as a sedative, diuretic, antiepileptic, antispasmodic, hypoglycemic, and hypocholesterolemic agent as well as in the control of obesity. Due to the spreading use of this plant as a therapeutic resource and food, the present study aimed to evaluate the genotoxic, antigenotoxic, and cytotoxic effects of S. lycocarpum ethanolic fruit extract using the mouse bone marrow micronucleus test. Both genotoxicity and antigenotoxicity of this ethanolic fruit extract were evaluated by using the frequency of micronucleated polychromatic erythrocytes, whereas cytotoxicity was assessed by the polychromatic and normochromatic erythrocytes ratio. Our results indicated that although S. lycocarpum ethanolic fruit extract did not exhibit genotoxic effect in mice bone marrow, both cytotoxic and antigenotoxic actions were evidenced at all tested doses.


Subject(s)
Antimutagenic Agents/pharmacology , Cytotoxins/toxicity , Fruit/chemistry , Mutagens/toxicity , Plant Extracts/pharmacology , Plant Extracts/toxicity , Solanum/chemistry , Algorithms , Animals , Animals, Outbred Strains , Antimutagenic Agents/toxicity , Bone Marrow Cells/drug effects , Brazil , Cytotoxins/pharmacology , Dose-Response Relationship, Drug , Male , Medicine, Traditional/adverse effects , Mice , Micronucleus Tests , Mitomycin/antagonists & inhibitors , Mitomycin/toxicity , Mutagens/pharmacology , Random Allocation , Toxicity Tests, Acute
SELECTION OF CITATIONS
SEARCH DETAIL
...