Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Surg Res ; 298: 109-118, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38603941

ABSTRACT

INTRODUCTION: Brain death (BD) compromises the viability of the lung for donation. Hypertonic saline solution (HSS) induces rapid intravascular volume expansion and immunomodulatory action. We investigated its role in ventilatory mechanics (VMs) and in the inflammatory activity of the lungs of rats subjected to BD. METHODS: Wistar rats were divided into four groups: control, n = 10: intact rats subjected to extraction of the heart-lung block; BD, n = 8 (BD): rats treated with isotonic saline solution (4 mL/kg) immediately after BD; hypertonic saline 0 h, n = 9 (Hip.0'): rats treated with HSS (4 mL/kg) immediately after BD; and hypertonic saline 1 h, n = 9 (Hip.60'), rats treated with HSS (4 mL/kg) 60 min after BD. The hemodynamic characteristics, gas exchange, VMs, inflammatory mediators, and histopathological evaluation of the lung were evaluated over 240 min of BD. RESULTS: In VMs, we observed increased airway resistance, tissue resistance, tissue elastance, and respiratory system compliance in the BD group (P < 0.037), while the treated groups showed no impairment over time (P > 0.05). In the histological analysis, the BD group showed a greater area of perivascular edema and a higher neutrophil count than the control group and the Hip.60' group (P < 0.05). CONCLUSIONS: Treatment with HSS was effective in preventing changes in the elastic and resistive pulmonary components, keeping them at baseline levels. Late treatment reduced perivascular and neutrophilic edema in lung tissue.


Subject(s)
Brain Death , Lung , Rats, Wistar , Animals , Brain Death/physiopathology , Saline Solution, Hypertonic/pharmacology , Lung/drug effects , Lung/pathology , Male , Rats , Respiratory Mechanics/drug effects , Lung Transplantation
2.
Carbohydr Res ; 538: 109098, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38527408

ABSTRACT

This study describes the novel development of quaternized cassava starch (Q-CS) with antimicrobial and antiviral properties, particularly effective against the MHV-3 coronavirus. The preparation of Q-CS involved the reaction of cassava starch (CS) with glycidyltrimethylammonium chloride (GTMAC) in an alkaline solution. Q-CS physicochemical properties were determined by FTIR, NMR, elemental analysis, zeta potential, TGA, and moisture sorption. FTIR and NMR spectra confirmed the introduction of cationic groups in the CS structure. The elemental analysis revealed a degree of substitution (DS) of 0.552 of the cationic reagent on the hydroxyl groups of CS. Furthermore, Q-CS exhibited a positive zeta potential value (+28.6 ± 0.60 mV) attributed to the high positive charge density shown by the quaternary ammonium groups. Q-CS demonstrated lower thermal stability and higher moisture sorption compared to CS. The antimicrobial activity of Q-CS was confirmed against Escherichia coli (MIC = 0.156 mg mL-1) and Staphylococcus aureus (MIC = 0.312 mg mL-1), along with a remarkable ability to inactivate 99% of MHV-3 coronavirus after only 1 min of direct contact. Additionally, Q-CS showed high cell viability (close to 100%) and minimal cytotoxicity effects, guaranteeing its safe use. Therefore, these findings indicate the potential use of Q-CS as a raw material for antiseptic biomaterials.


Subject(s)
Ammonium Compounds , Coronavirus , Manihot , Manihot/chemistry , Staphylococcus aureus , Starch/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...