Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Stress ; 20(2): 189-196, 2017 03.
Article in English | MEDLINE | ID: mdl-28288545

ABSTRACT

Angiotensin II (Ang II) acts as a pro-stress hormone, while other evidence indicates that angiotensin-(1-7) [Ang-(1-7)] attenuates physiological responses to emotional stress. To further test this hypothesis, in groups of 5-6 rats we evaluated autonomic, cardiovascular and behavioral parameters in male Sprague-Dawley (SD) and transgenic TGR(A1-7)3292 (TG) rats chronically overexpressing Ang-(1-7). Compared to SD rats, TG rats showed reduced baseline heart rate (HR; SD 380 ± 16 versus TG 329 ± 9 beats per minute (bpm), mean ± standard error of mean, p < .05) and renal sympathetic discharge (SD 138 ± 4 versus TG 117 ± 5 spikes/second, p < .05). TG rats had an attenuated tachycardic response to acute air-puff stress (ΔHR: SD 51 ± 20 versus TG 1 ± 3 bpm; p < .05), which was reversed by intracerebroventricular injection of the Mas receptor antagonist, A-779 (ΔHR: SD 51 ± 20 versus TG 63 ± 15 bpm). TG rats showed less anxious behavior on the elevated plus maze, as revealed by more entries into open arms (SD 2 ± 2 versus TG 47 ± 5% relative to total entries; p < .05), and more time spent in the open arms (SD 5 ± 4 versus TG 53 ± 9% relative to total time, p < .05). By contrast with SD rats, diazepam (1.5 mg/kg, intraperitoneally) did not further reduce anxious behavior in TG rats, indicating a ceiling anxiolytic effect of Ang-(1-7) overexpression. Ang-(1-7) concentrations in hypothalamus and plasma, measured by mass spectrometry were two- and three-fold greater, respectively, in TG rats than in SD rats. Hence, increased endogenous Ang-(1-7) levels in TG rats diminishes renal sympathetic outflow and attenuates cardiac reactivity to emotional stress, which may be via central Mas receptors, and reduces anxious behavior. Lay summaryWe used a genetically modified rat model that produces above normal amounts of a peptide hormone called angiotensin-(1-7) to test whether this peptide can reduce some of the effects of stress. We found that angiotensin-(1-7), acting in the brain, can reduce anxiety and reduce the increase in heart rate associated with emotional stress. These findings may provide a lead for design of new drugs to reduce stress.


Subject(s)
Angiotensin I/genetics , Anxiety/genetics , Heart Rate/physiology , Peptide Fragments/genetics , Stress, Psychological/physiopathology , Angiotensin II/analogs & derivatives , Angiotensin II/pharmacology , Animals , Animals, Genetically Modified , Heart Rate/drug effects , Male , Peptide Fragments/pharmacology , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...