Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 143: 57-61, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28501730

ABSTRACT

Control of Culex quinquefasciatus using chemical insecticides may result in the selection of resistant mosquito strains. Thus, the use of plant-derived products has been studied as alternative for the mosquito control. Fatty acid methyl esters (FAMEs) obtained by transesterification of vegetable oils may result in compounds with larvicidal potential against C. quinquefasciatus. However, little is known about the morphological, physiological or biochemical effects that these FAMEs may have on mosquito larvae. The present study reports the effects of these FAMEs in mosquito larvae. The FAMEs were obtained by transesterification of canola, corn, sunflower, and soybean oils with acid catalysis and the determination of FAMEs composition was done by gas chromatography-mass spectrometry (GC-MS). Larvae of C. quinquefasciatus were exposed to different concentrations of the vegetable oils and FAMEs. Thereby, different FAMEs showed LC50 values ranging from 42.32 to 196.27mg/L against C. quinquefasciatus larvae. The methyl ester obtained from sunflower oil showed the lowest LC50. Histology of C. quinquefasciatus larvae exposed to LC50 of FAMEs was performed and changes in the midgut and fat body morphology were identified. Therefore, larval mortality and changes in the internal organs suggested that FAMEs might be a promising new class of larvicidalcompounds. Cytotoxicity of FAMEs compounds was assessed with the HeLa human cell line and no effect was observed.


Subject(s)
Culex/drug effects , Fatty Acids/pharmacology , Insecticides/pharmacology , Mosquito Control/methods , Plant Oils/pharmacology , Animals , Cell Survival/drug effects , Fatty Acids/chemistry , Fatty Acids/toxicity , Gas Chromatography-Mass Spectrometry , HeLa Cells , Humans , Insecticides/chemistry , Larva/drug effects , Lethal Dose 50 , Plant Oils/chemistry , Plant Oils/toxicity , Sunflower Oil
2.
J Membr Biol ; 249(4): 459-67, 2016 08.
Article in English | MEDLINE | ID: mdl-26993642

ABSTRACT

Culex quinquefasciatus is the main vector of lymphatic filariasis and combating this insect is of great importance to public health. There are reports of insects that are resistant to the products currently used to control this vector, and therefore, the search for new products has increased. In the present study, we have evaluated the effects of fatty acid methyl esters (FAMEs) that showed larvicidal activity against C. quinquefasciatus, on glucose, total protein, and triacylglycerol contents and Na(+)/K(+)-ATPase activity in mosquito larvae. The exposure of the fourth instar larvae to the compounds caused a decrease in the total protein content and an increase in the activity of the Na(+)/K(+)-ATPase. Furthermore, the direct effect of FAMEs on cell membrane was assessed on purified pig kidney Na(+)/K(+)-ATPase membranes, erythrocyte ghost membranes, and larvae membrane preparation. No modifications on total phospholipids and cholesterol content were found after FAMEs 20 min treatment on larvae membrane preparation, but only 360 µg/mL FAME 2 was able to decrease total phospholipid of erythrocyte ghost membrane. Moreover, only 60 and 360 µg/mL FAME 3 caused an activation of purified Na(+)/K(+)-ATPase, that was an opposite effect of FAMEs treatment in larvae membrane preparation, and caused an inhibition of the pump activity. These data together suggest that maybe FAMEs can modulate the Na(+)/K(+)-ATPase on intact larvae for such mechanisms and not for a direct effect, one time that the direct effect of FAMEs in membrane preparation decreased the activity of Na(+)/K(+)-ATPase. The biochemical changes caused by the compounds were significant and may negatively influence the development and survival of C. quinquefasciatus larvae.


Subject(s)
Culex/metabolism , Esters , Fatty Acids/metabolism , Larva/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , Cholesterol/metabolism , Erythrocyte Membrane/metabolism , Esters/chemistry , Fatty Acids/chemistry , Fatty Acids/pharmacology , Kidney , Phospholipids/metabolism , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...