Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Cancer Res ; 14(7): 2145-53, 2008 Apr 01.
Article in English | MEDLINE | ID: mdl-18381956

ABSTRACT

PURPOSE: Irinotecan is a prodrug converted to the active cytotoxic molecule SN38 predominantly by the action of liver carboxylesterases. The efficacy of irinotecan is limited by this hepatic activation that results in a low conversion rate, high interpatient variability, and dose-limiting gastrointestinal toxicity. The purpose of this study was to evaluate a novel peptidic prodrug of SN38 (DTS-108) developed to bypass this hepatic activation and thus reduce the gastrointestinal toxicity and interpatient variability compared with irinotecan. EXPERIMENTAL DESIGN: SN38 was conjugated to a cationic peptide (Vectocell) via an esterase cleavable linker. The preclinical development plan consisted of toxicity and efficacy evaluation in a number of different models and species. RESULTS: The conjugate (DTS-108) is highly soluble, with a human plasma half-life of 400 minutes in vitro. Studies in the dog showed that DTS-108 liberates significantly higher levels of free SN38 than irinotecan without causing gastrointestinal toxicity. In addition, the ratio of the inactive SN38-glucuronide metabolite compared with the active SN38 metabolite is significantly lower following DTS-108 administration, compared with irinotecan, which is consistent with reduced hepatic metabolism. In vivo efficacy studies showed that DTS-108 has improved activity compared with irinotecan. A significant dose-dependent antitumoral efficacy was observed in all models tested and DTS-108 showed synergistic effects in combination with other clinically relevant therapeutic agents. CONCLUSIONS: DTS-108 is able to deliver significantly higher levels of SN38 than irinotecan, without the associated toxicity of irinotecan, resulting in an increased therapeutic window for DTS-108 in preclinical models. These encouraging data merit further preclinical and clinical investigation.


Subject(s)
Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Camptothecin/analogs & derivatives , Drug Carriers , Neoplasms, Experimental/drug therapy , Peptides/chemistry , Peptides/chemical synthesis , Peptides/pharmacology , Prodrugs/pharmacology , Animals , Antineoplastic Agents, Phytogenic/chemical synthesis , Camptothecin/chemical synthesis , Camptothecin/chemistry , Camptothecin/metabolism , Camptothecin/pharmacology , Cations , Dogs , Humans , Irinotecan , Prodrugs/chemical synthesis , Prodrugs/metabolism , Xenograft Model Antitumor Assays
2.
Clin Cancer Res ; 14(4): 1258-65, 2008 Feb 15.
Article in English | MEDLINE | ID: mdl-18281561

ABSTRACT

PURPOSE: There is a clear clinical need for cytotoxic drugs with a lower systemic toxicity. DTS-201 (CPI-0004Na) is a peptidic prodrug of doxorubicin that shows an improved therapeutic index in experimental models. The purpose of the current study was to complete its preclinical characterization before initiation of phase I clinical trials. EXPERIMENTAL DESIGN: The preclinical development program consisted of a detailed assessment of the general and cardiac toxicity profiles of DTS-201 in mice, rats, and dogs, together with mass balance and antitumoral efficacy studies in rodents. Neprilysin and thimet oligopeptidase expression, two enzymatic activators of DTS-201, was also characterized in human breast and prostate tumor biopsies. RESULTS: The target organs of DTS-201 toxicity in rodents and dogs are typically those of doxorubicin, albeit at much higher doses. Importantly, chronic treatment with DTS-201 proved to be significantly less cardiotoxic than with doxorubicin at doses up to 8-fold higher in rats. The mass balance study showed that [14C] DTS-201 does not accumulate in the body after intravenous administration. The improved therapeutic index of DTS-201 compared with free doxorubicin was confirmed in three tumor xenograft models of prostate, breast, and lung cancer. Neprilysin and/or thimet oligopeptidase are expressed in all experimental human tumor types thus far tested as well as in a large majority of human breast and prostate tumor biopsies. CONCLUSION: DTS-201 gave promising results in terms of general toxicity, cardiovascular tolerance, and in vivo efficacy in xenograft mouse models compared with free doxorubicin. Taken together, these results and the confirmation of the presence of activating enzymes in human tumor biopsies provide a strong rationale for a phase I clinical study in cancer patients.


Subject(s)
Doxorubicin/analogs & derivatives , Doxorubicin/metabolism , Neoplasms, Experimental/drug therapy , Oligopeptides/pharmacology , Prodrugs/pharmacology , Animals , Breast Neoplasms/enzymology , Cell Line, Tumor , Dogs , Doxorubicin/pharmacology , Female , Humans , Male , Metalloendopeptidases/biosynthesis , Mice , Neprilysin/biosynthesis , Prostatic Neoplasms/enzymology , Rats , Xenograft Model Antitumor Assays
3.
Eur J Biochem ; 270(2): 315-24, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12605682

ABSTRACT

Butyrylcholinesterase is a serine esterase, closely related to acetylcholinesterase. Both enzymes employ a catalytic triad mechanism for catalysis, similar to that used by serine proteases such as alpha-chymotrypsin. Enzymes of this type are generally considered to be inactive at pH values below 5, because the histidine member of the catalytic triad becomes protonated. We have found that butyrylcholinesterase retains activity at pH

Subject(s)
Butyrylcholinesterase/metabolism , Butyrylthiocholine/metabolism , Amino Acid Substitution , Amino Acids , Butyrylcholinesterase/chemistry , Butyrylthiocholine/chemistry , Humans , Hydrogen-Ion Concentration , Structure-Activity Relationship
4.
Biochim Biophys Acta ; 1597(2): 229-43, 2002 Jun 03.
Article in English | MEDLINE | ID: mdl-12044901

ABSTRACT

Hydrolysis of the neutral substrate N-methylindoxyl acetate (NMIA) by wild-type human butyrylcholinesterase (BuChE) and peripheral site mutants (D70G, Y332A, D70G/Y332A) was found to follow the Michaelis-Menten kinetics. K(m) was 0.14 mM for wild-type, and 0.07-0.16 mM for D70G, Y332A and D70G/Y332A, indicating that the peripheral site is not involved in NMIA binding. The values of k(cat) were of the same order for all enzymes: 12,000-18,000 min(-1). Volume changes upon substrate binding (-DeltaV(K(m))) and the activation volumes (DeltaV++(k(cat)) associated with hydrolysis of NMIA were calculated from the pressure dependence of the catalytic constants. Values of -DeltaV(K(m)) indicate that NMIA binds to an aromatic residue, presumed to be W82, the active site binding locus. Binding is accompanied by a release of water molecules from the gorge. Residue 70 controls the number of water molecules that are released upon substrate binding. The values of DeltaV++(k(cat)), which are positive for wild-type and faintly positive for D70G, clearly indicate that the catalytic steps are accompanied by re-entry of water into the gorge. Results support the premise that residue D70 is involved in the conformational stabilization of the active site gorge and in control of its hydration. A slow transient, preceding the steady state, was seen on a time scale of several minutes. The induction time rapidly increased with NMIA concentration to reach a limit at substrate saturation. Much shorter induction times (<1 min) were seen for hydrolysis of benzoylcholine (BzCh) by wild-type BuChE and for hydrolysis of butyrylthiocholine (BuSCh) by the active site mutants E197Q and E197Q/G117H. This slow transient was interpreted in terms of hysteresis without kinetic cooperativity. The hysteretic behavior of BuChE results from a slow conformational equilibrium between two enzyme states E and E'. NMIA binds only to the primed form E'. Kosmotropic salts and hydrostatic pressure were found to shift the equilibrium toward E'. The E-->E' transition is accompanied by a negative activation volume (DeltaV++(0)= -45+/-10 ml/mol), and the E' form is more compact than E. Hydration water in the gorge of E' appears to be more structured than in the unprimed form.


Subject(s)
Butyrylcholinesterase/metabolism , Indoles/metabolism , Animals , Butyrylcholinesterase/chemistry , Butyrylcholinesterase/genetics , CHO Cells , Catalysis , Catalytic Domain/genetics , Cricetinae , Enzyme Activation , Humans , Hydrolysis , Hydrostatic Pressure , In Vitro Techniques , Kinetics , Models, Molecular , Mutagenesis, Site-Directed , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Salts/pharmacology , Substrate Specificity , Thermodynamics
5.
Biochim Biophys Acta ; 1594(2): 313-24, 2002 Feb 11.
Article in English | MEDLINE | ID: mdl-11904227

ABSTRACT

Substrate inhibition is considered a defining property of acetylcholinesterase (AChE), whereas substrate activation is characteristic of butyrylcholinesterase (BuChE). To understand the mechanism of substrate inhibition, the pH dependence of acetylthiocholine hydrolysis by AChE was studied between pH 5 and 8. Wild-type human AChE and its mutants Y337G and Y337W, as well as wild-type Bungarus fasciatus AChE and its mutants Y333G, Y333A and Y333W were studied. The pH profile results were unexpected. Instead of substrate inhibition, wild-type AChE and all mutants showed substrate activation at low pH. At high pH, there was substrate inhibition for wild-type AChE and for the mutant with tryptophan in the pi-cation subsite, but substrate activation for mutants containing small residues, glycine or alanine. This is particularly apparent in the B. fasciatus AChE. Thus a single amino acid substitution in the pi-cation site, from the aromatic tyrosine of B. fasciatus AChE to the alanine of BuChE, caused AChE to behave like BuChE. Excess substrate binds to the peripheral anionic site (PAS) of AChE. The finding that AChE is activated by excess substrate supports the idea that binding of a second substrate molecule to the PAS induces a conformational change that reorganizes the active site.


Subject(s)
Acetylcholinesterase/chemistry , Acetylcholinesterase/genetics , Acetylthiocholine/chemistry , Binding Sites , Butyrylcholinesterase/chemistry , Humans , Hydrogen-Ion Concentration , Kinetics , Models, Molecular , Mutation , Phenylalanine/chemistry , Protein Conformation , Tyrosine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...