Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomech ; 128: 110645, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34500364

ABSTRACT

In breast surgical practice, drawing is part of the preoperative planning procedure and is essential for a successful operation. In this study, we design a pipeline to assist surgeons with patient-specific breast surgical drawings. We use a deformable torso model containing the surgical patterns to match any breast surface scan. To be compatible with surgical timing, we build an articulated model through a skinning process coupled with shape deformers to enhance a fast registration process. On one hand, the scalable bones of the skinning account for pose and morphological variations of the patients. On the other hand, pre-designed artistic blendshapes create a linear space for guaranteeing anatomical variations. Then, we apply meaningful constraints to the model to find a trade-off between precision and speed. The experiments were conducted on 7 patients, in 2 different poses (prone and supine) with a breast size ranging from 36A and 42C (US/UK bra sizing). The acquisitions were obtained using the depth camera Structure Sensor, and the breast scans were acquired in less than 1 minute. The result is a registration method converging within a few seconds (3 maximum), reaching a Mean Absolute Error of 2.3 mm for mesh registration and 8.0 mm for breast anatomical landmarks. Compared to the existing literature, our model can be personalized and does not require any database. Finally, our registered model can be used to transfer surgical reference patterns onto any patient in any position.


Subject(s)
Breast , Torso , Breast/diagnostic imaging , Breast/surgery , Humans
2.
Ultrasound Med Biol ; 41(12): 3172-81, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26365925

ABSTRACT

Fetal activity parameters such as movements, heart rate and the related parameters are essential indicators of fetal wellbeing, and no device provides simultaneous access to and sufficient estimation of all of these parameters to evaluate fetal health. This work was aimed at collecting these parameters to automatically separate healthy from compromised fetuses. To achieve this goal, we first developed a multi-sensor-multi-gate Doppler system. Then we recorded multidimensional Doppler signals and estimated the fetal activity parameters via dedicated signal processing techniques. Finally, we combined these parameters into four sets of parameters (or four hyper-parameters) to determine the set of parameters that is able to separate healthy from other fetuses. To validate our system, a data set consisting of two groups of fetal signals (normal and compromised) was established and provided by physicians. From the estimated parameters, an instantaneous Manning-like score, referred to as the ultrasonic score, was calculated and was used together with movements, heart rate and the associated parameters in a classification process employing the support vector machine method. We investigated the influence of the sets of parameters and evaluated the performance of the support vector machine using the computation of sensibility, specificity, percentage of support vectors and total classification error. The sensitivity of the four sets ranged from 79% to 100%. Specificity was 100% for all sets. The total classification error ranged from 0% to 20%. The percentage of support vectors ranged from 33% to 49%. Overall, the best results were obtained with the set of parameters consisting of fetal movement, short-term variability, long-term variability, deceleration and ultrasound score. The sensitivity, specificity, percentage of support vectors and total classification error of this set were respectively 100%, 100%, 35% and 0%. This indicated our ability to separate the data into two sets (normal fetuses and pathologic fetuses), and the results highlight the excellent match with the clinical classification performed by the physicians. This work indicates the feasibility of detecting compromised fetuses and also represents an interesting method of close fetal monitoring during the entire pregnancy.


Subject(s)
Echocardiography, Doppler , Fetal Movement/physiology , Heart Rate, Fetal/physiology , Signal Processing, Computer-Assisted , Ultrasonography, Doppler , Ultrasonography, Prenatal , Adult , Feasibility Studies , Female , Fetal Monitoring , Humans , Image Processing, Computer-Assisted , Pregnancy , Sensitivity and Specificity , Support Vector Machine , Young Adult
3.
Med Phys ; 41(11): 112503, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25370662

ABSTRACT

PURPOSE: Respiratory motion is a source of artifacts that reduce image quality in PET. Four dimensional (4D) PET/CT is one approach to overcome this problem. Existing techniques to limiting the effects of respiratory motions are based on prospective phase binning which requires a long acquisition duration (15-25 min). This time is uncomfortable for the patients and limits the clinical exploitation of 4D PET/CT. In this work, the authors evaluated an existing method and an alternative retrospective binning method to reduce the acquisition duration of 4D PET/CT. METHODS: The authors studied an existing mixed-amplitude binning (MAB) method and an alternative binning method by mixed-phases (MPhB). Before implementing MPhB, they analyzed the regularity of the breathing patterns in patients. They studied the breathing signal drift and missing CT slices that could be challenging for implementing MAB. They compared the performance of MAB and MPhB with current binning methods to measure the maximum uptake, internal volume, and maximal range of tumor motion. RESULTS: MPhB can be implemented depending on an optimal phase (in average, the exhalation peak phase -4.1% of the entire breathing cycle duration). Signal drift of patients was in average 35% relative to the breathing amplitude. Even after correcting this drift, MAB was feasible in 4D CT for only 64% of patients. No significant differences appeared between the different binning methods to measure the maximum uptake, internal volume, and maximal range of tumor motion. The authors also determined the inaccuracies of MAB and MPhB to measure the maximum amplitude of tumor motion with three bins (less than 3 mm for movement inferior to 12 mm, up to 6.4 mm for a 21 mm movement). CONCLUSIONS: The authors proposed an alternative binning method by mixed-phase binning that halves the acquisition duration of 4D PET/CT. Mixed-amplitude binning was challenging because of signal drift and missing CT slices. They showed that more than three bins were necessary for a more accurate measurement of the maximum amplitude of the tumor motion. However, the current 4D-CT technology limits the increase of the number of bins in 4D PET/CT because of missing CT slices. One can reconstruct 4D PET images with more bins but without attenuation/scatter correction.


Subject(s)
Four-Dimensional Computed Tomography/methods , Positron-Emission Tomography/methods , Tomography, X-Ray Computed/methods , Adult , Aged , Aged, 80 and over , Algorithms , Female , Humans , Image Processing, Computer-Assisted/methods , Male , Middle Aged , Movement , Radiographic Image Interpretation, Computer-Assisted , Respiration , Software
4.
Med Phys ; 40(3): 032501, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23464338

ABSTRACT

PURPOSE: Respiratory motion creates artifacts in positon emission tomography with computed tomography (PET/CT) images especially for lung tumors, and can alter diagnosis. To account for motion effects, respiratory gating techniques have been developed. However, the lack of measures strongly correlated with tumor motion limits their accuracy. The authors developed a real-time pneumotachograph device (SPI) allowing to sort PET and CT images depending on lung volumes. METHODS: The performance of this innovative respiratory tracking system was characterized and compared to a standard system. Our experimental setup consisted in a movable platform and a thorax phantom with six fillable spheres simulating lung tumors. The accuracy of SPI to detect inhalation peaks was also determined on volunteers. A comparison with the real-time position management (RPM) device, that relies on abdominal height measurement, was then investigated. RESULTS: Experiments showed a high accuracy of the measured signal compared to the input signal (R = 0.88 to 0.99), and of the detection of the inhalation peaks (error of 0.1 +/- 5.8 ms) necessary for prospective binning mode. Activity recovery coefficient was improved (until +39%) and the smearing effect was reduced (until 2.74 times lower) with SPI compared to ungated PET/CT acquisition. The spatial distribution of activity in spheres was similar for 4D PET gated with SPI and RPM. Significant improvement of the binning stability and matching between PET and CT were highlighted for irregular breathing patterns with SPI. CONCLUSIONS: SPI is an innovative device that provides better binning performance than the current gating device on phantom experiments. Future works will focus on patients where the authors expect a significant improvement of specificity and sensitivity of PET/CT examinations.


Subject(s)
Four-Dimensional Computed Tomography/instrumentation , Multimodal Imaging/instrumentation , Positron-Emission Tomography , Respiratory-Gated Imaging Techniques/instrumentation , Tomography, X-Ray Computed , Artifacts , Humans , Movement , Patient Positioning , Phantoms, Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...