Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 12(9)2023 May 03.
Article in English | MEDLINE | ID: mdl-37176931

ABSTRACT

Modern agriculture has boosted the production of food based on the use of pesticides and fertilizers and improved plant varieties. However, the impact of some such technologies is high and not sustainable in the long term. Although the importance of rhizospheres in final plant performance, nutrient cycling, and ecosystems is well recognized, there is still a lack of information on the interactions of their main players. In this paper, four accessions of pepper are studied at the rhizosphere and root level under two farming systems: organic and conventional. Variations in soil traits, such as induced respiration, enzymatic activities, microbial counts, and metabolism of nitrogen at the rhizosphere and bulk soil, as well as measures of root morphology and plant production, are presented. The results showed differences for the evaluated traits between organic and conventional management, both at the rhizosphere and bulk soil levels. Organic farming showed higher microbial counts, enzymatic activities, and nitrogen mobilization. Our results also showed how some genotypes, such as Serrano or Piquillo, modified the properties of the rhizospheres in a very genotype-dependent way. This specificity of the soil-plant interaction should be considered for future breeding programs for soil-tailored agriculture.

2.
Plants (Basel) ; 12(2)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36678946

ABSTRACT

Peppers (Capsicum sp.) are used both as vegetables and/or spice and their fruits are used in a plethora of recipes, contributing to their flavor and aroma. Among flavor-related traits, pungency (capsaicinoids) and lately volatiles have been considered the most important factors. However, the knowledge of sugars is low, probably due to the fact peppers were historically considered tasteless. Here, using HPLC, we studied the content and profile of major sugars and capsaicinoids in a comprehensive collection of varietal types (genotype, G), grown under different growing systems (environment, E) in two years (Y) and considered the two main ripening stages (R). We found a major contribution to the ripening stage and the genotype in total and individual sugars and capsaicinoids. The year was also significant in most cases, as well as the G × E and G × Y interactions, while the growing system was low or nil. Ripening increased considerably in sugars (from 19.6 to 36.1 g kg-1 on average) and capsaicinoids (from 97 to 142 mg kg-1 on average), with remarkable differences among varieties. Moreover, sugars in fully ripe fruits ranged between 7.5 and 38.5 g kg-1 in glucose and between 5.2 and 34.3 g kg-1 in fructose, and several accessions reached total sugars between 40 and 70 g kg-1, similar to tomatoes. The results reveal the importance of the genotype and the ripening for these traits, particularly sugars, which should be considered key for the improvement of taste and flavor in peppers.

3.
J Sci Food Agric ; 100(5): 2208-2223, 2020 Mar 30.
Article in English | MEDLINE | ID: mdl-31909478

ABSTRACT

BACKGROUND: In recent years, the acreage used for organic agriculture and the demand for organic fruit and vegetables have increased considerably. Given this scenario, landraces, such as Capsicum landraces, can provide valuable germplasm. Capsicum peppers are very interesting because of their high phenolic content, and particularly their flavonoid content, which provides a high added value. Moreover, the broad genetic diversity in local varieties expands the opportunities for adaptation to organic production and for exploiting genotype × environment interactions to select peppers with the highest phenolic content. RESULTS: In this work, the main flavonoids of peppers were exhaustively evaluated over 2 years in a wide collection of heirlooms, both unripe and fully ripe, under organic and conventional cultivation. The genotype and ripening stage contributed to a high degree to the variation in flavonoids. The growing system influenced this variation to a lesser extent. Luteolin and quercetin showed the highest contributions to total phenolic content (70% and > 20%, respectively) at both ripening stages, while myricetin, apigenin, and kaempferol showed lower contributrions. The average flavonoid content was higher in ripe fruits, and organic management significantly increased the accumulation of total flavonoids and luteolin. Positive correlations between flavonoids were found at both ripening stages, especially between main flavonoids luteolin and quercetin and between kaempferol and quercetin (ρ > 0.7). CONCLUSION: Genotype × environment interaction enabled the identification of accessions with high flavonoid content grown under organic conditions at both ripening stages, particularly total flavonoids and luteolin at the fully ripe stage. Our results reinforce the importance of a wide genetic variation and of considering different ripening stages and growing conditions for breeding high-quality peppers. © 2020 Society of Chemical Industry.


Subject(s)
Capsicum/chemistry , Crops, Agricultural/chemistry , Flavonoids/analysis , Antioxidants/analysis , Ascorbic Acid/analysis , Food Analysis , Fruit/chemistry , Kaempferols/analysis , Luteolin/analysis , Organic Agriculture , Phenols/analysis , Plant Development , Quercetin/analysis
4.
PLoS One ; 13(11): e0207888, 2018.
Article in English | MEDLINE | ID: mdl-30462729

ABSTRACT

Peppers (Capsicum spp.) are one of the most important vegetables and their double use (vegetable or spice) and two commercial stages (unripe and fully ripe) contributed to their use in many recipes and fast diffusion from America. Nowadays, Spain is a center of diversity for C. annuum, with many landraces, offering a great opportunity for adaptation to organic cultivation. Furthermore, Capsicum peppers contain many bioactive compounds, essential to provide high added-value to these cultivars, especially for organic markets, although knowledge about the effect of organic cultivation on Capsicum fruit quality is still scarce. Here, 37 accessions of Spanish landraces and foreign materials from C. annuum and other species were grown under organic and conventional conditions and evaluated for ascorbic acid (AAC), total phenolics (TP) and total red and yellow/orange carotenoids, considering both ripening stages. A large genotypic variation was found within each ripening stage and growing condition for the studied traits. Also, both stages showed high levels, although fully ripe fruits were the richest. Organic conditions enabled higher levels in fully ripe fruits of AAC and TP on average (135 vs 117 mg·100 g-1 and 232 vs 206 mg·100 g-1) and in most accessions, although the genotype×growing conditions interaction also contributed, but at lower extent, to the observed variation. Significant genotype×ripening stage and growing conditions×ripening stage interactions were also found, suggesting that the magnitude of the increase with ripening depends on the accession and growing conditions. By contrast, there were no differences between growing conditions for carotenoids and differences were mainly due to the genotype factor. Finally, the large genotypic variation and favourable organic conditions allowed identifying several materials from different types and uses with very high levels of bioactive compounds for organic cultivation, in both ripening stages but particularly at fully ripe stage (>500 mg·100 g-1).


Subject(s)
Capsicum/chemistry , Capsicum/growth & development , Organic Agriculture , Ascorbic Acid/analysis , Capsicum/genetics , Carotenoids/analysis , Genotype , Phenols/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...