Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Adv ; 10(3): eadj6417, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38232154

ABSTRACT

Utilization of in situ/operando methods with broad beams and localized probes has accelerated our understanding of fluid-surface interactions in recent decades. The closed-cell microchips based on silicon nitride (SiNx) are widely used as "nanoscale reactors" inside the high-vacuum electron microscopes. However, the field has been stalled by the high background scattering from encapsulation (typically ~100 nanometers) that severely limits the figures of merit for in situ performance. This adverse effect is particularly notorious for gas cell as the sealing membranes dominate the overall scattering, thereby blurring any meaningful signals and limiting the resolution. Herein, we show that by adopting the back-supporting strategy, encapsulating membrane can be reduced substantially, down to ~10 nanometers while maintaining structural resiliency. The systematic gas cell work demonstrates advantages in figures of merit for hitherto the highest spatial resolution and spectral visibility. Furthermore, this strategy can be broadly adopted into other types of microchips, thus having broader impact beyond the in situ/operando fields.

2.
Microsc Microanal ; 29(6): 1950-1960, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37851063

ABSTRACT

In a scanning transmission electron microscope (STEM), producing a high-resolution image generally requires an electron beam focused to the smallest point possible. However, the magnetic lenses used to focus the beam are unavoidably imperfect, introducing aberrations that limit resolution. Modern STEMs overcome this by using hardware aberration correctors comprised of many multipole elements, but these devices are complex, expensive, and can be difficult to tune. We demonstrate a design for an electrostatic phase plate that can act as an aberration corrector. The corrector is comprised of annular segments, each of which is an independent two-terminal device that can apply a constant or ramped phase shift to a portion of the electron beam. We show the improvement in image resolution using an electrostatic corrector. Engineering criteria impose that much of the beam within the probe-forming aperture be blocked by support bars, leading to large probe tails for the corrected probe that sample the specimen beyond the central lobe. We also show how this device can be used to create other STEM beam profiles such as vortex beams and probes with a high degree of phase diversity, which improve information transfer in ptychographic reconstructions.

3.
Nat Commun ; 14(1): 6031, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37758701

ABSTRACT

High-density phase change memory (PCM) storage is proposed for materials with multiple intermediate resistance states, which have been observed in 1T-TaS2 due to charge density wave (CDW) phase transitions. However, the metastability responsible for this behavior makes the presence of multistate switching unpredictable in TaS2 devices. Here, we demonstrate the fabrication of nanothick verti-lateral H-TaS2/1T-TaS2 heterostructures in which the number of endotaxial metallic H-TaS2 monolayers dictates the number of resistance transitions in 1T-TaS2 lamellae near room temperature. Further, we also observe optically active heterochirality in the CDW superlattice structure, which is modulated in concert with the resistivity steps, and we show how strain engineering can be used to nucleate these polytype conversions. This work positions the principle of endotaxial heterostructures as a promising conceptual framework for reliable, non-volatile, and multi-level switching of structure, chirality, and resistance.

4.
Microsc Microanal ; 29(3): 1087-1095, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37749690

ABSTRACT

Material properties strongly depend on the nature and concentration of defects. Characterizing these features may require nano- to atomic-scale resolution to establish structure-property relationships. 4D-STEM, a technique where diffraction patterns are acquired at a grid of points on the sample, provides a versatile method for highlighting defects. Computational analysis of the diffraction patterns with virtual detectors produces images that can map material properties. Here, using multislice simulations, we explore different virtual detectors that can be applied to the diffraction patterns that go beyond the binary response functions that are possible using ordinary STEM detectors. Using graphene and lead titanate as model systems, we investigate the application of virtual detectors to study local order and in particular defects. We find that using a small convergence angle with a rotationally varying detector most efficiently highlights defect signals. With experimental graphene data, we demonstrate the effectiveness of these detectors in characterizing atomic features, including vacancies, as suggested in simulations. Phase and amplitude modification of the electron beam provides another process handle to change image contrast in a 4D-STEM experiment. We demonstrate how tailored electron beams can enhance signals from short-range order and how a vortex beam can be used to characterize local symmetry.

7.
ACS Nano ; 16(10): 17257-17262, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36153944

ABSTRACT

Superconducting thin films of niobium have been extensively employed in transmon qubit architectures. Although these architectures have demonstrated improvements in recent years, further improvements in performance through materials engineering will aid in large-scale deployment. Here, we use information retrieved from secondary ion mass spectrometry and electron microscopy to conduct a detailed assessment of the surface oxide that forms in ambient conditions for transmon test qubit devices patterned from a niobium film. We observe that this oxide exhibits a varying stoichiometry with NbO and NbO2 found closer to the niobium film/oxide interface and Nb2O5 found closer to the surface. In terms of structural analysis, we find that the Nb2O5 region is semicrystalline in nature and exhibits randomly oriented grains on the order of 1-3 nm corresponding to monoclinic N-Nb2O5 that are dispersed throughout an amorphous matrix. Using fluctuation electron microscopy, we are able to map the relative crystallinity in the Nb2O5 region with nanometer spatial resolution. Through this correlative method, we observe that the highly disordered regions are more likely to contain oxygen vacancies and exhibit weaker bonds between the niobium and oxygen atoms. Based on these findings, we expect that oxygen vacancies likely serve as a decoherence mechanism in quantum systems.

8.
Nano Lett ; 22(10): 4137-4144, 2022 05 25.
Article in English | MEDLINE | ID: mdl-35523204

ABSTRACT

Nanoscale tailoring of catalytic materials and Li-battery alternatives has elevated the importance of in situ gas-phase electron microscopy. Such advanced techniques are often performed using an environmental cell inserted into a conventional S/TEM setup, as this method facilitates concurrent electrochemical and temperature stimulations in a convenient and cost-effective manner. However, these cells are made by encapsulating gas between two insulating membranes, which introduces additional electron scattering. We have evaluated strengths and limitations of the gas-phase E-cell S/TEM technique, both experimentally and through simulations, across a variety of practical parameters. We reveal the degradation of image quality in an E-cell setup from various components and explore opportunities to improve imaging quality through intelligent choice of experimental parameters. Our results underscore the benefits of using an E-cell STEM technique, due to its versatility and excellent ability to suppress the exotic contributions from the membrane device.


Subject(s)
Electric Power Supplies , Lithium , Microscopy, Electron , Microscopy, Electron, Scanning Transmission/methods , Temperature
9.
Nano Lett ; 21(16): 6813-6819, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34379413

ABSTRACT

Copper (Cu) is a catalyst broadly used in industry for hydrogenation of carbon dioxide, which has broad implications for environmental sustainability. An accurate understanding of the degeneration behavior of Cu catalysts under operando conditions is critical for uncovering the failure mechanism of catalysts and designing novel ones with optimized performance. Despite the widespread use of these materials, their failure mechanisms are not well understood because conventional characterization techniques lack the necessary time and spatial resolution to capture these complex behaviors. In order to overcome these challenges, we carried out transmission electron microscopy (TEM) with a specialized in situ gas environmental holder, which allows us to unravel the dynamic behavior of the Cu nanowires (NWs) in operando. The failure process of these nanoscale Cu catalysts under CO2 atmosphere were tracked and further rationalized based on our numerical modeling using phase-field methods.

10.
Nano Lett ; 21(17): 7131-7137, 2021 Sep 08.
Article in English | MEDLINE | ID: mdl-34448396

ABSTRACT

In situ electron microscopy is an effective tool for understanding the mechanisms driving novel phenomena in 2D structures. However, due to practical challenges, it is difficult to address these technologically relevant 2D heterostructures with electron microscopy. Here, we use the differential phase contrast (DPC) imaging technique to build a methodology for probing local electrostatic fields during electrical operation with nanoscale spatial resolution in such materials. We find that, by combining a traditional DPC setup with a high-pass filter, we can largely eliminate electric fluctuations emanating from short-range atomic potentials. Using a method based on this filtering algorithm, a priori electric field expectations can be directly compared with experimentally derived values to readily identify inhomogeneities and potentially problematic regions. We use this platform to analyze the electric field and charge density distribution across layers of hBN and MoS2.

11.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Article in English | MEDLINE | ID: mdl-34088843

ABSTRACT

Aqueous phosphate pollution can dramatically impact ecosystems, introducing a variety of environmental, economic, and public health problems. While novel remediation tactics based on nanoparticle binding have shown considerable promise in nutrient recovery from water, they are challenging to deploy at scale. To bridge the gap between the laboratory-scale nature of these nanostructure solutions and the practical benchmarks for deploying an environmental remediation tool, we have developed a nanocomposite material. Here, an economical, readily available, porous substrate is dip coated using scalable, water-based processes with a slurry of nanostructures. These nanomaterials have tailored affinity for specific adsorption of pollutants. Our Phosphate Elimination and Recovery Lightweight (PEARL) membrane can selectively sequester up to 99% of phosphate ions from polluted waters at environmentally relevant concentrations. Moreover, mild tuning of pH promotes at will adsorption and desorption of nutrients. This timed release allows for phosphate recovery and reuse of the PEARL membrane repeatedly for numerous cycles. We combine correlative microscopy and spectroscopy techniques to characterize the complex microstructure of the PEARL membrane and to unravel the mechanism of phosphate sorption. More broadly, through the example of phosphate pollution, this work describes a platform membrane approach based on nanostructures with specific affinity coated on a porous structure. Such a strategy can be tuned to address other environmental remediation challenges through the incorporation of other nanomaterials.


Subject(s)
Environmental Restoration and Remediation , Membranes, Artificial , Nanocomposites/chemistry , Phosphates/chemistry , Water Pollutants, Chemical/chemistry , Water Pollution
12.
Mater Today (Kidlington) ; 50: 100-115, 2021 Nov.
Article in English | MEDLINE | ID: mdl-35241968

ABSTRACT

Inspired by the unique architectures composed of hard and soft materials in natural and biological systems, synthetic hybrid structures and associated soft-hard interfaces have recently evoked significant interest. Soft matter is typically dominated by fluctuations even at room temperature, while hard matter (which often serves as the substrate or anchor for the soft component) is governed by rigid mechanical behavior. This dichotomy offers considerable opportunities to leverage the disparate properties offered by these components across a wide spectrum spanning from basic science to engineering insights with significant technological overtones. Such hybrid structures, which include polymer nanocomposites, DNA functionalized nanoparticle superlattices and metal organic frameworks to name a few, have delivered promising insights into the areas of catalysis, environmental remediation, optoelectronics, medicine, and beyond. The interfacial structure between these hard and soft phases exists across a variety of length scales and often strongly influence the functionality of hybrid systems. While scanning/transmission electron microscopy (S/TEM) has proven to be a valuable tool for acquiring intricate molecular and nanoscale details of these interfaces, the unusual nature of hybrid composites presents a suite of challenges that make assessing or establishing the classical structure-property relationships especially difficult. These include challenges associated with preparing electron-transparent samples and obtaining sufficient contrast to resolve the interface between dissimilar materials given the dose sensitivity of soft materials. We discuss each of these challenges and supplement a review of recent developments in the field with additional experimental investigations and simulations to present solutions for attaining a nano or atomic-level understanding of these interfaces. These solutions present a host of opportunities for investigating and understanding the role interfaces play in this unique class of functional materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...