Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
Reprod Domest Anim ; 59(7): e14663, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38990011

ABSTRACT

The present study was conducted to investigate the global proteome of 8-day-old equine blastocysts. Follicular dynamics of eight adult mares were monitored by ultrasonography and inseminated 24 h after the detection of a preovulatory follicle. Four expanded blastocysts were recovered, pooled, and subjected to protein extraction and mass spectrometry. Protein identification was conducted based on four database searches (PEAKS, Proteome Discoverer software, SearchGUI software, and PepExplorer). Enrichment analysis was performed using g:Profiler, Panther, and String platforms. After the elimination of identification redundancies among search tools (at three levels, based on identifiers, peptides, and cross-database mapping), 1977 proteins were reliably identified in the samples of equine embryos. Proteomic analysis unveiled robust metabolic activity in the 8-day equine embryo, highlighted by an abundance of proteins engaged in key metabolic pathways like the TCA cycle, ATP biosynthesis, and glycolysis. The prevalence of chaperones among highly abundant proteins suggests that regulation of protein folding, and degradation is a key process during embryo development. These findings pave the way for developing new strategies to improve equine embryo media and optimize in vitro fertilization techniques.


Subject(s)
Blastocyst , Proteome , Animals , Horses/embryology , Female , Blastocyst/metabolism , Embryonic Development , Prospective Studies , Proteomics , Fertilization in Vitro/veterinary
2.
J Fungi (Basel) ; 10(5)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38786676

ABSTRACT

Cotton is an important plant-based protein. Cottonseed cake, a byproduct of the biodiesel industry, offers potential in animal supplementation, although the presence of the antinutritional sesquiterpenoid gossypol limits utilization. The macrofungus Panus lecomtei offers potential in detoxification of antinutritional factors. Through an enzymatic and proteomic analysis of P. lecomtei strain BRM044603, grown on crushed whole cottonseed contrasting in the presence of free gossypol (FG), this study investigated FG biodegradation over a 15-day cultivation period. Fungal growth reduced FG to levels at 100 µg/g, with a complex adaptive response observed, involving primary metabolism and activation of oxidative enzymes for metabolism of xenobiotics. Increasing activity of secreted laccases correlated with a reduction in FG, with enzyme fractions degrading synthetic gossypol to trace levels. A total of 143 and 49 differentially abundant proteins were observed across the two contrasting growth conditions after 6 and 12 days of cultivation, respectively, revealing a dynamic protein profile during FG degradation, initially related to constitutive metabolism, then later associated with responses to oxidative stress. The findings advance our understanding of the mechanisms involved in gossypol degradation and highlight the potential of P. lecomtei BRM044603 in cotton waste biotreatment, relevant for animal supplementation, sustainable resource utilization, and bioremediation.

3.
Sci Rep ; 14(1): 9810, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38684702

ABSTRACT

Heart failure (HF) studies typically focus on ischemic and idiopathic heart diseases. Chronic chagasic cardiomyopathy (CCC) is a progressive degenerative inflammatory condition highly prevalent in Latin America that leads to a disturbance of cardiac conduction system. Despite its clinical and epidemiological importance, CCC molecular pathogenesis is poorly understood. Here we characterize and discriminate the plasma metabolomic profile of 15 patients with advanced HF referred for heart transplantation - 8 patients with CCC and 7 with idiopathic dilated cardiomyopathy (IDC) - using gas chromatography/quadrupole time-of-flight mass spectrometry. Compared to the 12 heart donor individuals, also included to represent the control (CTRL) scenario, patients with advanced HF exhibited a metabolic imbalance with 21 discriminating metabolites, mostly indicative of accumulation of fatty acids, amino acids and important components of the tricarboxylic acid (TCA) cycle. CCC vs. IDC analyses revealed a metabolic disparity between conditions, with 12 CCC distinctive metabolites vs. 11 IDC representative metabolites. Disturbances were mainly related to amino acid metabolism profile. Although mitochondrial dysfunction and loss of metabolic flexibility may be a central mechanistic event in advanced HF, metabolic imbalance differs between CCC and IDC populations, possibly explaining the dissimilar clinical course of Chagas' patients.


Subject(s)
Cardiomyopathy, Dilated , Chagas Cardiomyopathy , Heart Transplantation , Metabolomics , Humans , Male , Female , Middle Aged , Chagas Cardiomyopathy/metabolism , Chagas Cardiomyopathy/blood , Metabolomics/methods , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/surgery , Cardiomyopathy, Dilated/blood , Adult , Metabolome , Heart Failure/metabolism , Heart Failure/etiology , Aged , Chronic Disease , Gas Chromatography-Mass Spectrometry
4.
J Interpers Violence ; : 8862605241246005, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38624094

ABSTRACT

The study of firearm violence in Mexico has primarily focused on homicides and trafficking. Less attention has been given to understanding how firearms affect other crimes and facilitate criminal activity beyond drug markets. By analyzing two questions, this study explores the role of firearms in extortions perpetrated in Mexico from 2012 to 2021. Questions are: What is the likelihood of reporting extortions to the police if offenders exhibited firearms? What is the likelihood of compliance with demands when offenders are armed with firearms? We obtained data from Mexico's National Crime Victimization Surveys and analyzed 2,619 extortions reported from 2012 to 2021. To explore our research questions, we ran two binary logistic regressions. Our dependent variables were dichotomous (reported to police = 1, complied with demands = 1). The independent variables were weapon types (extortions involving firearms as the reference group). We controlled for victim demographics as well as crime characteristics. Our results indicate that 40% of these extortions (n = 1,058) were perpetrated with a firearm. Fifty-two percent of extortions were perpetrated by unarmed offenders (n = 1,348) and 8% (n = 213) were perpetrated with other weapons (no firearms). Models suggest that, when compared to extortions perpetrated by unarmed offenders or those exhibiting other weapons (no firearms), victims of extortions involving firearms are less likely to report these crimes to police, mainly because of fear of reprisal. Similarly, victims are more likely to comply with demands if offenders exhibit firearms. Findings highlight the role of firearms in criminal enterprises and support the need for a comprehensive policy agenda to address firearm violence in Mexico.

5.
J Antimicrob Chemother ; 79(1): 112-122, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-37966053

ABSTRACT

BACKGROUND: The synthetic antimicrobial peptide, PaDBS1R1, has been reported as a powerful anti-Klebsiella pneumoniae antimicrobial. However, there is only scarce knowledge about whether K. pneumoniae could develop resistance against PaDBS1R1 and which resistance mechanisms could be involved. OBJECTIVES: Identify via label-free shotgun proteomics the K. pneumoniae resistance mechanisms developed against PaDBS1R1. METHODS: An adaptive laboratory evolution experiment was performed to obtain a PaDBS1R1-resistant K. pneumoniae lineage. Antimicrobial susceptibility was determined through microdilution assay. Modifications in protein abundances between the resistant and sensitive lineages were measured via label-free quantitative shotgun proteomics. Enriched Gene Ontology terms and KEGG pathways were identified through over-representation analysis. Data are available via ProteomeXchange with identifier PXD033020. RESULTS: K. pneumoniae ATCC 13883 parental strain challenged with increased subinhibitory PaDBS1R1 concentrations allowed the PaDBS1R1-resistant K. pneumoniae lineage to emerge. Proteome comparisons between PaDBS1R1-resistant K. pneumoniae and PaDBS1R1-sensitive K. pneumoniae under PaDBS1R1-induced stress conditions enabled the identification and quantification of 1702 proteins, out of which 201 were differentially abundant proteins (DAPs). The profiled DAPs comprised 103 up-regulated proteins (adjusted P value < 0.05, fold change ≥ 2) and 98 down-regulated proteins (adjusted P value < 0.05, fold change ≤ 0.5). The enrichment analysis suggests that PhoPQ-guided LPS modifications and CpxRA-dependent folding machinery could be relevant resistance mechanisms against PaDBS1R1. CONCLUSIONS: Based on experimental evolution and a label-free quantitative shotgun proteomic approach, we showed that K. pneumoniae developed resistance against PaDBS1R1, whereas PhoPQ-guided LPS modifications and CpxRA-dependent folding machinery appear to be relevant resistance mechanisms against PaDBS1R1.


Subject(s)
Anti-Infective Agents , Klebsiella Infections , Humans , Anti-Bacterial Agents/pharmacology , Klebsiella pneumoniae/genetics , Antimicrobial Peptides , Proteomics , Lipopolysaccharides , Anti-Infective Agents/pharmacology , Microbial Sensitivity Tests
6.
Sci Rep ; 13(1): 2602, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36788287

ABSTRACT

Corynebacterium glutamicum is a bacterium widely employed in the industrial production of amino acids as well as a broad range of other biotechnological products. The present study describes the characterization of C. glutamicum proteoforms, and their post-translational modifications (PTMs) employing top-down proteomics. Despite previous evidence of PTMs having roles in the regulation of C. glutamicum metabolism, this is the first top-down proteome analysis of this organism. We identified 1125 proteoforms from 273 proteins, with 60% of proteins presenting at least one mass shift, suggesting the presence of PTMs, including several acetylated, oxidized and formylated proteoforms. Furthermore, proteins relevant to amino acid production, protein secretion, and oxidative stress were identified with mass shifts suggesting the presence of uncharacterized PTMs and proteoforms that may affect biotechnologically relevant processes in this industrial workhorse. For instance, the membrane proteins mepB and SecG were identified as a cleaved and a formylated proteoform, respectively. While in the central metabolism, OdhI was identified as two proteoforms with potential biological relevance: a cleaved proteoform and a proteoform with PTMs corresponding to a 70 Da mass shift.


Subject(s)
Corynebacterium glutamicum , Tandem Mass Spectrometry , Corynebacterium glutamicum/metabolism , Proteomics , Protein Processing, Post-Translational , Proteome/metabolism
7.
Front Cell Infect Microbiol ; 12: 920425, 2022.
Article in English | MEDLINE | ID: mdl-35782121

ABSTRACT

Chikungunya virus (CHIKV) is a single-stranded positive RNA virus that belongs to the genus Alphavirus and is transmitted to humans by infected Aedes aegypti and Aedes albopictus bites. In humans, CHIKV usually causes painful symptoms during acute and chronic stages of infection. Conversely, virus-vector interaction does not disturb the mosquito's fitness, allowing a persistent infection. Herein, we studied CHIKV infection of Ae. aegypti Aag-2 cells (multiplicity of infection (MOI) of 0.1) for 48 h through label-free quantitative proteomic analysis and transmission electron microscopy (TEM). TEM images showed a high load of intracellular viral cargo at 48 h postinfection (hpi), as well as an unusual elongated mitochondria morphology that might indicate a mitochondrial imbalance. Proteome analysis revealed 196 regulated protein groups upon infection, which are related to protein synthesis, energy metabolism, signaling pathways, and apoptosis. These Aag-2 proteins regulated during CHIKV infection might have roles in antiviral and/or proviral mechanisms and the balance between viral propagation and the survival of host cells, possibly leading to the persistent infection.


Subject(s)
Aedes , Chikungunya Fever , Chikungunya virus , Animals , Humans , Mosquito Vectors , Proteome , Proteomics
8.
Front Oncol ; 12: 833068, 2022.
Article in English | MEDLINE | ID: mdl-35814389

ABSTRACT

Myelodysplastic syndrome (MDS) is a hematological disorder characterized by abnormal stem cell differentiation and a high risk of acute myeloid leukemia transformation. Treatment options for MDS are still limited, making the identification of molecular signatures for MDS progression a vital task. Thus, we evaluated the proteome of bone marrow plasma from patients (n = 28) diagnosed with MDS with ring sideroblasts (MDS-RS) and MDS with blasts in the bone marrow (MDS-EB) using label-free mass spectrometry. This strategy allowed the identification of 1,194 proteins in the bone marrow plasma samples. Polyubiquitin-C (UBC), moesin (MSN), and Talin-1 (TLN1) showed the highest abundances in MDS-EB, and centrosomal protein of 55 kDa (CEP55) showed the highest relative abundance in the bone marrow plasma of MDS-RS patients. In a follow-up, in the second phase of the study, expressions of UBC, MSN, TLN1, and CEP55 genes were evaluated in bone marrow mononuclear cells from 45 patients by using qPCR. This second cohort included only seven patients from the first study. CEP55, MSN, and UBC expressions were similar in mononuclear cells from MDS-RS and MDS-EB individuals. However, TLN1 gene expression was greater in mononuclear cells from MDS-RS (p = 0.049) as compared to MDS-EB patients. Irrespective of the MDS subtype, CEP55 expression was higher (p = 0.045) in MDS patients with abnormal karyotypes, while MSN, UBC, and TALIN1 transcripts were similar in MDS with normal vs. abnormal karyotypes. In conclusion, proteomic and gene expression approaches brought evidence of altered TLN1 and CEP55 expressions in cellular and non-cellular bone marrow compartments of patients with low-risk (MDS-RS) and high-risk (MDS-EB) MDSs and with normal vs. abnormal karyotypes. As MDS is characterized by disrupted apoptosis and chromosomal alterations, leading to mitotic slippage, TLN1 and CEP55 represent potential markers for MDS prognosis and/or targeted therapy.

9.
Inj Prev ; 28(3): 238-242, 2022 06.
Article in English | MEDLINE | ID: mdl-34887333

ABSTRACT

INTRODUCTION: As the volume of firearms (legal and illegal) in Mexico grows, gun violence has become a major public health challenge. While studies have focused on gun-related homicides and robberies, there is a dearth of research addressing non-fatal gunshot injuries. At the same time, official government sources report limited information and undercount these injuries. OBJECTIVE: The objective of this article is threefold. First, to provide data of non-fatal gunshot injuries sustained during crimes in Mexico; second, to estimate their initial individual healthcare costs; finally, to compare those costs to those resulting from other forms of injuries. This article contributes to discussions on gun violence in Mexico and its impact on public health. METHODS: We analysed Mexico's National Crime Victimization Survey from 2014 to 2020. FINDINGS: We estimated that there were approximately 150 415 non-fatal gunshot injuries during crimes perpetrated from 2013 to 2019. We found that most non-fatal criminal gunshot injuries occur during a robbery and that victims tend to be men and young people between 18 and 35 years of age. Most of these injuries occur in urban areas and public spaces. While non-fatal gun-related injuries are not as common during crimes as other non-fatal injuries, their initial individual healthcare expenses are significantly higher. Crimes involving gun-related injuries reported an average expense of 16 643 pesos and crimes involving other forms of injuries reported an average of 1281 pesos. This discrepancy highlights the health burden associated with gun violence.


Subject(s)
Criminals , Firearms , Wounds, Gunshot , Adolescent , Homicide , Humans , Male , Mexico/epidemiology , Wounds, Gunshot/epidemiology , Wounds, Gunshot/prevention & control
10.
Microbiol Res ; 247: 126730, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33662850

ABSTRACT

Aerobic organisms require oxygen for energy. In the course of the infection, adaptation to hypoxia is crucial for survival of human pathogenic fungi. Members of the Paracoccidioides complex face decreased oxygen tensions during the life cycle stages. In Paracoccidioides brasiliensis proteomic responses to hypoxia have not been investigated and the regulation of the adaptive process is still unknown, and this approach allowed the identification of 216 differentially expressed proteins in hypoxia using iTRAQ-labelling. Data suggest that P. brasiliensis reprograms its metabolism when submitted to hypoxia. The fungus reduces its basal metabolism and general transport proteins. Energy and general metabolism were more representative and up regulated. Glucose is apparently directed towards glycolysis or the production of cell wall polymers. Plasma membrane/cell wall are modulated by increasing ergosterol and glucan, respectively. In addition, molecules such as ethanol and acetate are produced by this fungus indicating that alternative carbon sources probably are activated to obtain energy. Also, detoxification mechanisms are activated. The results were compared with label free proteomics data from Paracoccidioides lutzii. Biochemical pathways involved with acetyl-CoA, pyruvate and ergosterol synthesis were up-regulated in both fungi. On the other hand, proteins from TCA, transcription, protein fate/degradation, cellular transport, signal transduction and cell defense/virulence processes presented different profiles between species. Particularly, proteins related to methylcitrate cycle and those involved with acetate and ethanol synthesis were increased in P. brasiliensis proteome, whereas GABA shunt were accumulated only in P. lutzii. The results emphasize metabolic adaptation processes for distinct Paracoccidioides species.


Subject(s)
Hypoxia/metabolism , Paracoccidioides/metabolism , Proteome/metabolism , Proteomics , Cell Wall/metabolism , Ergosterol/biosynthesis , Fungal Proteins/genetics , Fungal Proteins/isolation & purification , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Glycolysis , Humans , Hydrogen Peroxide/metabolism , Nitrogen/metabolism , Paracoccidioides/genetics , Paracoccidioides/pathogenicity , Virulence
11.
Biochim Biophys Acta Proteins Proteom ; 1869(5): 140619, 2021 05.
Article in English | MEDLINE | ID: mdl-33561577

ABSTRACT

The protozoan Trypanosoma cruzi is the causative agent of the neglected infectious illness Chagas disease. During its life cycle it differentiates into replicative and non-replicative life stages. So far, T. cruzi cell division has been investigated by transcriptomics but not by proteomics approaches. Here we show the first quantitative proteome analysis of T. cruzi cell division. T. cruzi epimastigote cultures were subject to synchronization with hydroxyurea and harvested at different time points. Analysis by flow cytometry, bright field and fluorescence microscopy indicated that samples collected at 0 h, 2 h, 6 h and 14 h overrepresented G1, G1-S, S and M cell cycle phases, respectively. After trypsin digestion of these samples, the resulting peptides were labelled with iTRAQ and subjected to LC-MS/MS. Also, iTRAQ-labelled phosphopeptides were enriched with TiO2 to access the phosphoproteome. Overall, 597 protein groups and 94 phosphopeptides presented regulation with the most remarkable variation in abundance at 6 h (S-phase). Comparison of our proteomic data to previous transcriptome-wise analysis of epimastigote cell cycle showed 16 sequence entries in common, with the highest mRNA/protein correlation observed in transcripts with peak abundance in G1-phase. Our data revealed regulated proteins and phosphopeptides which play important roles in the control of cell division in other organisms and some of them were previously detected in the nucleus or associated with T. cruzi chromatin.


Subject(s)
Cell Cycle , Phosphoproteins/metabolism , Proteomics/methods , Protozoan Proteins/metabolism , Trypanosoma cruzi/metabolism , Cell Nucleus/metabolism , Chromatin/metabolism , Chromatography, Liquid/methods , Flow Cytometry , Microscopy, Fluorescence , Tandem Mass Spectrometry/methods , Transcriptome , Trypanosoma cruzi/cytology
12.
J Proteomics ; 236: 104118, 2021 03 30.
Article in English | MEDLINE | ID: mdl-33486016

ABSTRACT

Plasmodium blood stages, responsible for human to vector transmission, termed gametocytes, are the precursor cells that develop into gametes in the mosquito. Male gametogenesis works as a bottleneck for the parasite life cycle, where, during a peculiar and rapid exflagellation, a male gametocyte produces 8 intracellular axonemes that generate by budding 8 motile gametes. Understanding the molecular mechanisms of gametogenesis is key to design strategies for controlling malaria transmission. In the rodent P. berghei, the microtubule-based motor kinesin-8B (PbKIN8B) is essential for flagellum assembly during male gametogenesis and its gene disruption impacts on completion of the parasitic life cycle. In efforts to improve our knowledge about male gametogenesis, we performed an iTRAQ-based quantitative proteomic comparison of P. berghei mutants with disrupted kinesin-8B gene (ΔPbkin8B) and wild type parasites. During the 15 min of gametogenesis, ΔPbkin8B parasites exhibited important motor protein dysregulation that suggests an essential role of PbKIN8B for the correct interaction or integration of axonemal proteins within the growing axoneme. The energy metabolism of ΔPbkin8B mutants was further affected, as well as the response to stress proteins, protein synthesis, as well as chromatin organisation and DNA processes, although endomitoses seemed to occur. SIGNIFICANCE: Malaria continues to be a global scourge, mainly in subtropical and tropical areas. The disease is caused by parasites from the Plasmodium genus. Plasmodium life cycle alternates between female Anopheles mosquitoes and vertebrate hosts through bites. Gametocytes are the parasite blood forms responsible for transmission from vertebrates to vectors. Inside the mosquito midgut, after stimulation, male and female gametocytes transform into gametes resulting in fertilization. During male gametogenesis, one gametocyte generates eight intracytoplasmic axonemes that generate, by budding, flagellated motile gametes involving a process termed exflagellation. Sexual development has a central role in ensuring malaria transmission. However, molecular data on male gametogenesis and particularly on intracytoplasmic axoneme assembly are still lacking. Since rodent malaria parasites permit the combination of in vivo and in vitro experiments and reverse genetic studies, our group investigated the molecular events in rodent P. berghei gametogenesis. The P. berghei motor ATPase kinesin-8B is proposed as an important component for male gametogenesis. We generated Pbkin8B gene-disrupted gametocytes (ΔPbkin8B) that were morphologically similar to the wild- type (WT) parasites. However, in mutants, male gametogenesis is impaired, male gametocytes are disabled in their ability to assemble axonemes and to exflagellate to release gametes, reducing fertilization drastically. Using a comparative quantitative proteomic analysis, we associated the nonfunctional axoneme of the mutants with the abnormal differential expression of proteins essential to axoneme organisation and stability. We also observed a differential dysregulation of proteins involved in protein biosynthesis and degradation, chromatin organisation and DNA processes in ΔPbkin8B parasites, although DNA condensation, mitotic spindle formation and endomitoses seem to occur. This is the first functional proteomic study of a kinesin gene-disrupted Plasmodium parasite providing new insights into Plasmodium male gametogenesis.


Subject(s)
Kinesins , Plasmodium berghei , Animals , Female , Gametogenesis/genetics , Kinesins/genetics , Male , Mosquito Vectors , Plasmodium berghei/genetics , Proteomics , Protozoan Proteins/genetics
13.
Reprod Domest Anim ; 56(4): 586-603, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33460477

ABSTRACT

The present study was conducted to decipher the proteome of in vivo-produced pre-implantation ovine embryos. Ten locally adapted Morana Nova ewes received hormonal treatment and were inseminated 12 hr after ovulation. Six days later, 54 embryos (morula and blastocyst developmental state) were recovered from eight ewes and pooled to obtain sufficient protein for proteomic analysis. Extracted embryo proteins were analysed by LC-MS/MS, followed by identification based on four database searches (PEAKS, Proteome Discoverer software, SearchGUI software, PepExplorer). Identified proteins were analysed for gene ontology terms, protein clusters and interactions. Genes associated with the ovine embryo proteome were screened for miRNA targets using data sets of TargetScan (http://www.targetscan.org) and mIRBase (http://www.mirbase.org) servers. There were 667 proteins identified in the ovine embryos. Biological processes of such proteins were mainly related to cellular process and regulation, and molecular functions, to binding and catalytic activity. Analysis of the embryo proteins revealed 49 enriched functional clusters, linked to energy metabolism (TCA cycle, pyruvate and glycolysis metabolism), zona pellucida (ZP), MAPK signalling pathway, tight junction, binding of sperm to ZP, translation, proteasome, cell cycle and calcium/phospholipid binding. Sixteen miRNAs were related to 25 pre-implantation ovine embryo genes, all conserved in human, bovine and ovine species. The interaction network generated by miRNet showed four key miRNAs (hsa-mir-106b-5p; hsa-mir-30-5p; hsa-mir-103a-5p and hsa-mir-106a-5p) with potential interactions with embryo-expressed genes. Functional analysis of the network indicated that miRNAs modulate genes related to cell cycle, regulation of stem cell and embryonic cell differentiation, among others. Retrieved miRNAs also modulate the expression of genes involved in cell signalling pathways, such as MAPK, Wnt, TGF-beta, p53 and Toll-like receptor. The current study describes the first major proteomic profile of 6-day-old ovine embryos produced in vivo, setting a comprehensive foundation for our understanding of embryo physiology in the ovine species.


Subject(s)
Embryo, Mammalian/chemistry , Proteome/analysis , Sheep, Domestic/embryology , Animals , Female , Insemination, Artificial/veterinary , Male , MicroRNAs/genetics , Proteome/genetics , Sheep, Domestic/genetics , Sheep, Domestic/metabolism
14.
Sci Rep ; 11(1): 2560, 2021 01 28.
Article in English | MEDLINE | ID: mdl-33510253

ABSTRACT

Sex differences in the brain of mammals range from neuroarchitecture through cognition to cellular metabolism. The hippocampus, a structure mostly associated with learning and memory, presents high vulnerability to neurodegeneration and aging. Therefore, we explored basal sex-related differences in the proteome of organotypic hippocampal slice culture, a major in vitro model for studying the cellular and molecular mechanisms related to neurodegenerative disorders. Results suggest a greater prevalence of astrocytic metabolism in females and significant neuronal metabolism in males. The preference for glucose use in glycolysis, pentose phosphate pathway and glycogen metabolism in females and high abundance of mitochondrial respiration subunits in males support this idea. An overall upregulation of lipid metabolism was observed in females. Upregulation of proteins responsible for neuronal glutamate and GABA synthesis, along with synaptic associated proteins, were observed in males. In general, the significant spectrum of pathways known to predominate in neurons or astrocytes, together with the well-known neuronal and glial markers observed, revealed sex-specific metabolic differences in the hippocampus. TEM qualitative analysis might indicate a greater presence of mitochondria at CA1 synapses in females. These findings are crucial to a better understanding of how sex chromosomes can influence the physiology of cultured hippocampal slices and allow us to gain insights into distinct responses of males and females on neurological diseases that present a sex-biased incidence.


Subject(s)
Hippocampus/metabolism , Proteomics/methods , Animals , Female , Flow Cytometry , Hippocampus/ultrastructure , Humans , Lipid Metabolism/physiology , Male , Microscopy, Electron, Transmission , Nervous System/metabolism , Nervous System/ultrastructure , Neuroglia/metabolism , Neurotransmitter Agents/metabolism , Sex Characteristics , Signal Transduction/physiology
15.
J Proteomics ; 233: 104080, 2021 02 20.
Article in English | MEDLINE | ID: mdl-33338687

ABSTRACT

Dental pulp is a specialized tissue able to respond to infectious processes. Nevertheless, infection progress and root canal colonization trigger an immune-inflammatory response in tooth-surrounding tissues, leading to apical periodontitis and bone tissue destruction, further contributing to tooth loss. In order to shed some light on the effects of IL-4 on periradicular pathology development modulation, microtomographic, histological and proteomic analyses were performed using 60 mice, 30 wild type and 30 IL-4-/-. For that, 5 animals were used for microtomographic and histological analysis, and another 5 for proteomic analysis for 0, 7 and 21 days with/without pulp exposure. The periapical lesions were established in WT and IL-4-/- mice without statistical differences in their volume, and the value of p < 0.05 was adopted as significant in microtomographic and histological analyses. Regarding histological analysis, IL-4-/- mice show aggravation of pulp inflammation compared to WT. By using proteomic analysis, we have identified 32 proteins with increased abundance and 218 proteins with decreased abundance in WT animals after 21 days of pulp exposure, compared to IL-4-/- animals. However, IL-4-/- mice demonstrated faster development of apical periodontitis. These animals developed a compensatory mechanism to overcome IL-4 absence, putatively based on the identification of upregulated proteins related to immune system signaling pathways. Significance: IL-4 might play a protective role in diseases involving bone destruction and its activity may contribute to host protection, mainly due to its antiosteoclastogenic action.


Subject(s)
Interleukin-4 , Periapical Periodontitis , Animals , Inflammation , Mice , Proteomics
16.
Front Med (Lausanne) ; 8: 692272, 2021.
Article in English | MEDLINE | ID: mdl-35155457

ABSTRACT

Age-related macular degeneration (AMD) is among the world's leading causes of blindness. In its neovascular form (nAMD), around 25% of patients present further anatomical and visual deterioration due to persistence of neovascular activity, despite gold-standard treatment protocols using intravitreal anti-VEGF medications. Thus, to comprehend, the molecular pathways that drive choroidal neoangiogenesis, associated with the vascular endothelial growth factor (VEGF), are important steps to elucidate the mechanistic events underneath the disease development. This is a pilot study, a prospective, translational experiment, in a real-life context aiming to evaluate the protein profiles of the aqueous humor of 15 patients divided into three groups: group 1, composed of patients with nAMD, who demonstrated a good response to anti-VEGF intravitreal injections during follow-up (good responsive); group 2, composed of patients with anti-VEGF-resistant nAMD, who demonstrated choroidal neovascularization activity during follow-up (poor/non-responsive); and group 3, composed of control patients without systemic diseases or signs of retinopathy. For proteomic characterization of the groups, mass spectrometry (label-free LC-MS/MS) was used. A total of 2,336 proteins were identified, of which 185 were distinctly regulated and allowed the differentiation of the clinical conditions analyzed. Among those, 39 proteins, including some novel ones, were analyzed as potential disease effectors through their pathophysiological implications in lipid metabolism, oxidative stress, complement system, inflammatory pathways, and angiogenesis. So, this study suggests the participation of other promising biomarkers in neovascular AMD, in addition to the known VEGF.

17.
Article in English | MEDLINE | ID: mdl-32984079

ABSTRACT

Triatomines are hematophagous insects that transmit Trypanosoma cruzi, the etiological agent of Chagas disease. This neglected tropical disease represents a global health issue as it is spreading worldwide. The saliva of Triatominae contains miscellaneous proteins crucial for blood feeding acquisition, counteracting host's hemostasis while performing vasodilatory, anti-platelet and anti-coagulant activities, besides modulating inflammation and immune responses. Since a set of biological processes are mediated by protein complexes, here, the sialocomplexomes (salivary protein complexes) of five species of Triatominae were studied to explore the protein-protein interaction networks. Salivary multiprotein complexes from Triatoma infestans, Triatoma dimidiata, Dipetalogaster maxima, Rhodnius prolixus, and Rhodnius neglectus were investigated by Blue-Native- polyacrylamide gel electrophoresis coupled with liquid chromatography tandem mass spectrometry. More than 70 protein groups, uncovering the landscape of the Triatominae salivary interactome, were revealed. Triabin, actin, thioredoxin peroxidase and an uncharacterized protein were identified in sialocomplexes of the five species, while hexamerin, heat shock protein and histone were identified in sialocomplexes of four species. Salivary proteins related to triatomine immunity as well as those required during blood feeding process such as apyrases, antigen 5, procalins, and nitrophorins compose different complexes. Furthermore, unique proteins for each triatomine species were revealed. This study represents the first Triatominae sialocomplexome reference to date and shows that the approach used is a reliable tool for the analysis of Triatominae salivary proteins assembled into complexes.


Subject(s)
Triatoma , Triatominae , Trypanosoma cruzi , Animals , Insect Vectors , Proteomics , Saliva
18.
Antibiotics (Basel) ; 9(9)2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32967114

ABSTRACT

Amphibian skin secretions are abundant in bioactive compounds, especially antimicrobial peptides. These molecules are generally cationic and rich in hydrophobic amino acids, have an amphipathic structure and adopt an α-helical conformation when in contact with microorganisms membranes. In this work, we purified and characterized Figainin 1, a novel antimicrobial and antiproliferative peptide from the cutaneous secretion of the frog Boana raniceps. Figainin 1 is a cationic peptide with eighteen amino acid residues-rich in leucine and isoleucine, with an amidated C-terminus-and adopts an α-helical conformation in the presence of trifluoroethanol (TFE). It displayed activity against Gram-negative and especially Gram-positive bacteria, with MIC values ranging from 2 to 16 µM, and showed an IC50 value of 15.9 µM against epimastigote forms of T. cruzi; however, Figanin 1 did not show activity against Candida species. This peptide also showed cytolytic effects against human erythrocytes with an HC50 of 10 µM, in addition to antiproliferative activity against cancer cells and murine fibroblasts, with IC50 values ranging from 10.5 to 13.7 µM. Despite its adverse effects on noncancerous cells, Figainin 1 exhibits interesting properties for the development of new anticancer agents and anti-infective drugs against pathogenic microorganisms.

19.
Front Microbiol ; 11: 1834, 2020.
Article in English | MEDLINE | ID: mdl-32849434

ABSTRACT

Copper is an essential micronutrient for the performance of important biochemical processes such as respiration detoxification, and uptake of metals like iron. Studies have shown that copper deprivation is a strategy used by the host against pathogenic fungi such as Cryptoccocus neoformans and Candida albicans during growth and development of infections in the lungs and kidneys. Although there are some studies, little is known about the impact of copper deprivation in members of the Paracoccidioides genus. Therefore, using isobaric tag labeling (iTRAQ)-Based proteomic approach and LC-MS/MS, we analyzed the impact of in vitro copper deprivation in the metabolism of Paracoccidioides brasiliensis. One hundred and sixty-four (164) differentially abundant proteins were identified when yeast cells were deprived of copper, which affected cellular respiration and detoxification processes. Changes in cellular metabolism such as increased beta oxidation and cell wall remodeling were described.

20.
Front Cell Dev Biol ; 8: 380, 2020.
Article in English | MEDLINE | ID: mdl-32656202

ABSTRACT

The increase in high-energy dietary intakes is a well-known risk factor for many diseases, and can also negatively impact the tendon. Ancestral lifestyle can mitigate the metabolic harmful effects of offspring exposed to high-fat diet (HF). However, the influence of paternal exercise on molecular pathways associated to offspring tendon remodeling remains to be determined. We investigated the effects of 8 weeks of paternal resistance training (RT) on offspring tendon proteome exposed to standard diet or HF diet. Wistar rats were randomly divided into two groups: sedentary fathers and trained fathers (8 weeks, three times per week, with 8-12 dynamic movements per climb in a stair climbing apparatus). The offspring were obtained by mating with sedentary females. Upon weaning, male offspring were divided into four groups (five animals per group): offspring from sedentary fathers were exposed either to control diet (SFO-C), or to high-fat diet (SFO-HF); offspring from trained fathers were exposed to control diet (TFO-C) or to a high-fat diet (TFO-HF). The Nano-LC-MS/MS analysis revealed 383 regulated proteins among offspring groups. HF diet induced a decrease of abundance in tendon proteins related to extracellular matrix organization, transport, immune response and translation. On the other hand, the changes in the offspring tendon proteome in response to paternal RT were more pronounced when the offspring were exposed to HF diet, resulting in positive regulation of proteins essential for the maintenance of tendon integrity. Most of the modulated proteins are associated to biological pathways related to tendon protection and damage recovery, such as extracellular matrix organization and transport. The present study demonstrated that the father's lifestyle could be crucial for tendon homeostasis in the first generation. Our results provide important insights into the molecular mechanisms involved in paternal intergenerational effects and potential protective outcomes of paternal RT.

SELECTION OF CITATIONS
SEARCH DETAIL
...