Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Phys Chem C Nanomater Interfaces ; 128(7): 2844-2855, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38414834

ABSTRACT

Propane dehydrogenation (PDH) is an on-purpose catalytic technology to produce propylene from propane that operates at high temperatures, 773-973 K. Several key industry players have been active in developing new catalysts and processes with improved carbon footprint and economics, where Pt-based catalysts have played a central role. The optimization of these catalytic systems through computational and atomistic simulations requires large-scale models that account for their reactivity and dynamic properties. To address this challenge, we developed a new reactive ReaxFF force field (2023-Pt/C/H) that enables large-scale simulations of PDH reactions catalyzed on Pt surfaces. The optimization of force-field parameters relies on a large training set of density functional theory (DFT) calculations of Pt-catalyzed PDH mechanism, including geometries, adsorption and relative energies of reaction intermediates, and key C-H and C-C bond-breaking/forming reaction steps on the Pt(111) surface. The internal validation supports the accuracy of the developed 2023-Pt/C/H force-field parameters, resulting in mean absolute errors (MAE) against DFT data of 14 and 12 kJ mol-1 for relative energies of intermediates and energy barriers, respectively. We demonstrated the applicability of the 2023-Pt/C/H force field with reactive molecular dynamics simulations of propane on different Pt surface topologies and temperatures. The simulations successfully model the formation of propene in the gas phase as well as competitive, unproductive reactions such as deep dehydrogenation and C-C bond cleavage that produce H, C1 and C2 adsorbed species responsible of catalytic deactivation of Pt surface. Results show the following reactivity order: Pt(111) < Pt(100) < Pt(211), and that for the stepped Pt(211) surface, propane activation occurs on low-coordinated Pt atoms at the steps. The measured selectivity as a function of surface topology follows the same trend as activity, the Pt(211) facet being the most selective. The 2023-Pt/C/H reactive force field can also describe the increase of reactivity with the temperature. From these simulations, we were able to estimate the Arrhenius activation energy, 73 kJ mol-1, whose value is close to those reported experimentally for PDH catalyzed by large, supported Pt nanoparticles . The newly developed 2023-Pt/C/H reactive force field can be used in subsequent investigations of different Pt topologies and of collective effects such as temperature, propane pressure, or H surface coverage.

2.
Beilstein J Org Chem ; 20: 92-100, 2024.
Article in English | MEDLINE | ID: mdl-38264452

ABSTRACT

Fullerene dimerization inside a peapod is analyzed at DFT level by characterizing the stationary points and deriving the energy profile of the initial and reversible process named phase 1. We find that the barriers for the radical cation mechanism are significantly lower than those found for the neutral pathway. The peapod is mainly providing one-dimensional confinement for the reaction to take place in a more efficient way. Car-Parrinello metadynamics simulations provide hints on structures for the initial steps of the irreversible phase 2 where bond formation and breaking lead to important structural reorganizations within the coalescence process.

3.
Inorg Chem ; 62(26): 10100-10109, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37319404

ABSTRACT

Hydrogenolysis of a series of alkyl sulfido-bridged tantalum(IV) dinuclear complexes [Ta(η5-C5Me5)R(µ-S)]2 [R = Me, nBu (1), Et, CH2SiMe3, C3H5, Ph, CH2Ph (2), p-MeC6H4CH2 (3)] has led quantitatively to the Ta(III) tetrametallic sulfide cluster [Ta(η5-C5Me5)(µ3-S)]4 (4) along with the corresponding alkane. Mechanistic information for the formation of the unique low-valent tetrametallic compound 4 was gathered by hydrogenation of the phenyl-substituted precursor [Ta(η5-C5Me5)Ph(µ-S)]2, which proceeds through a stepwise hydrogenation process, disclosing the formation of the intermediate tetranuclear hydride sulfide [Ta2(η5-C5Me5)2(H)Ph(µ-S)(µ3-S)]2 (5). Extending our studies toward tantalum alkyl precursors containing functional groups susceptible to hydrogenation, such as the allyl-and benzyl-substituted compounds [Ta(η5-C5Me5)(η3-C3H5)(µ-S)]2 and [Ta(η5-C5Me5)(CH2Ph)(µ-S)]2 (2), enables alternative reaction pathways en route to the formation of 4. In the former case, the dimetallic system undergoes selective hydrogenation of the unsaturated allyl moiety, forming the asymmetric complex [{Ta(η5-C5Me5)(η3-C3H5)}(µ-S)2{Ta(η5-C5Me5)(C3H7)}] (6) with only one propyl fragment. Species 2, in addition to the hydrogenation of one benzyl fragment and concomitant toluene release, also undergoes partial hydrogenation and dearomatization of the phenyl ring on the vicinal benzyl unity to give a η5-cyclohexadienyl complex [Ta2(η5-C5Me5)2(µ-CH2C6H6)(µ-S)2] (7). The mechanistic implications of the latter hydrogenation process are discussed by means of DFT calculations.

4.
Inorg Chem ; 62(11): 4570-4580, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36893373

ABSTRACT

Ru and Rh nanoparticles catalyze the selective H/D exchange in phosphines using D2 as the deuterium source. The position of the deuterium incorporation is determined by the structure of the P-based substrates, while activity depends on the nature of the metal, the properties of the stabilizing agents, and the type of the substituent on phosphorus. The appropriate catalyst can thus be selected either for the exclusive H/D exchange in aromatic rings or also for alkyl substituents. The selectivity observed in each case provides relevant information on the coordination mode of the ligand. Density functional theory calculations provide insights into the H/D exchange mechanism and reveal a strong influence of the phosphine structure on the selectivity. The isotope exchange proceeds via C-H bond activation at nanoparticle edges. Phosphines with strong coordination through the phosphorus atom such as PPh3 or PPh2Me show preferred deuteration at ortho positions of aromatic rings and at the methyl substituents. This selectivity is observed because the corresponding C-H moieties can interact with the nanoparticle surface while the phosphine is P-coordinated, and the C-H activation results in stable metallacyclic intermediates. For weakly coordinating phosphines such as P(o-tolyl)3, the interaction with the nanoparticle can occur directly through phosphine substituents, and then, other deuteration patterns are observed.

5.
Inorg Chem ; 61(1): 474-485, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34890181

ABSTRACT

The reaction of [TaCpRX4] (CpR = η5-C5Me5, η5-C5H4SiMe3, η5-C5HMe4; X = Cl, Br) with SiH3Ph resulted in the formation of the dinuclear hydride tantalum(IV) compounds [(TaCpRX2)2(µ-H)2], structurally identified by single-crystal X-ray analyses. These species react with azobenzene to give the mononuclear imide complex [TaCpRX2(NPh)] along with the release of molecular hydrogen. Analogous reactions between the [{Ta(η5-C5Me5)X2}2(µ-H)2] derivatives and the cyclic diazo reagent benzo[c]cinnoline afford the biphenyl-bridged (phenylimido)tantalum complexes [{Ta(η5-C5Me5)X2}2(µ-NC6H4C6H4N)] along with the release of molecular hydrogen. When the compounds [(TaCpRX2)2(µ-H)2] (CpR = η5-C5H4SiMe3, η5-C5HMe4; X = Cl, Br) were employed, we were able to trap the side-on-bound diazo derivatives [(TaCpRX)2{µ-(η2,η2-NC6H4C6H4N)}] (CpR = η5-C5H4SiMe3, η5-C5HMe4; X = Cl, Br) as intermediates in the N═N bond cleavage process. DFT calculations provide insights into the N═N cleavage mechanism, in which the ditantalum(IV) fragment can promote two-electron reductions of the N═N bond at two different metal-metal bond splitting stages.

6.
Inorg Chem ; 60(2): 807-815, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33411534

ABSTRACT

The mechanism responsible for peptide bond hydrolysis by Co(III) and Cu(II) complexes with (oxa)cyclen ligands has been revisited by means of computational tools. We propose that the mechanism starts by substrate coordination and an outer-sphere attack on the amide C atom of a solvent water molecule assisted by the metal hydroxo moiety as a general base, which occurs through six-membered ring transition states. This new mechanism represents a more likely scenario than the previously proposed mechanisms that involved an inner-sphere nucleophilic attack through more strained four-membered rings transition states. The corresponding computed overall free-energy barrier of 25.2 kcal mol-1 for hydrolysis of the peptide bond in Phe-Ala by a cobalt(III) oxacyclen catalyst (1) is consistent with the experimental values obtained from rate constants. Also, we assessed the influence of the nature of the ligand throughout a systematic replacement of N by O atoms in the (oxa)cyclen ligand. Increasing the number of coordinating O atoms accelerates the reaction by increasing the Lewis acidity of the metal ion. On the other hand, the higher reactivity observed for the copper(II) oxacyclen catalyst with respect to the analogous Co(III) complex can be attributed to the larger Brönsted basicity of the copper(II) hydroxo ligand. Ultimately, the detailed understanding of the ligand and metal nature effects allowed us to identify the double role of the metal hydroxo complexes as Lewis acids and Brönsted bases and to rationalize the observed reactivity trends.


Subject(s)
Cobalt/chemistry , Coordination Complexes/chemistry , Copper/chemistry , Cyclams/chemistry , Peptides/chemistry , Catalysis , Density Functional Theory , Hydrolysis , Ligands , Molecular Conformation , Thermodynamics
7.
Inorg Chem ; 58(18): 12157-12166, 2019 Sep 16.
Article in English | MEDLINE | ID: mdl-31448905

ABSTRACT

Treatment of the dinuclear compound [{Ti(η5-C5Me5)Cl2}2(µ-O)] with allylmagnesium chloride provides the formation of the allyltitanium(III) derivative [{Ti(η5-C5Me5)(µ-C3H5)}2(µ-O)] (1), structurally identified by single-crystal X-ray analysis. Density functional theory (DFT) calculations confirm that the electronic structure of 1 is a singlet state, and the molecular orbital analysis, along with the short Ti-Ti distance, reveal the presence of a metal-metal single bond between the two Ti(III) centers. Complex 1 reacts rapidly with organic azides, RN3 (R = Ph, SiMe3), to yield the allyl µ-imido derivatives [{Ti(η5-C5Me5)(CH2CH═CH2)2}2(µ-NR)(µ-O)] [R = Ph(2), SiMe3(3)] along with molecular nitrogen release. Reaction of 2 and 3 with H2 leads to the µ-imido propyl species [{Ti(η5-C5Me5)(CH2CH2CH3)2}2(µ-NR)(µ-O)] [R = Ph(4), SiMe3(5)]. Theoretical calculations were used to gain insight into the hydrogenation mechanism of complex 3 and rationalize the lower reactivity of 2. Initially, the µ-imido bridging group in these complexes activates the H2 molecule via addition to the Ti-N bonds. Subsequently, the titanium hydride intermediates induce a change in hapticity of the allyl ligands, and the nucleophilic attack of the hydride to the allyl groups leads to metallacyclopropane intermediates. Finally, the proton transfer from the amido group to the metallacyclopropane moieties affords the propyl complexes 4 and 5.

8.
BMC Public Health ; 15: 473, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25947302

ABSTRACT

BACKGROUND: Despite evidence of the benefits of prevention activities, studies have reported only partial integration and great variability of screening in daily clinical practice. The study objectives were: 1) To describe Primary Health Care (PHC) screening for arterial hypertension, dyslipidaemia, obesity, tobacco use, and excessive alcohol consumption in 2008 in 2 regions of Spain, based on electronic health records, and 2) To assess and quantify variability in screening, and identify factors (of patient, general practitioners and PHC team) associated with being screened, that are common throughout the PHC population. METHODS: Multicentre, cross-sectional study of individuals aged ≥ 16 years (N = 468,940) who visited the 426 general practitioners (GPs) in 44 PHC teams in Catalonia and Navarre in 2008. OUTCOMES: screening for hypertension, dyslipidaemia, obesity, tobacco use, and excessive alcohol consumption. Other variables were considered at the individual (sociodemographics, visits, health problems), GP and PHC team (region among others). Individual and contextual factors associated with the odds of being screened and the variance attributable to each level were identified using the SAS PROC GLIMMIX macro. RESULTS: The most prevalent screenings were for dyslipidaemia (64.4%) and hypertension (50.8%); the least prevalent was tobacco use (36.6%). Overall, the odds of being screened were higher for women, older patients, those with more comorbidities, more cardiovascular risk factors, and more frequent office visits, and those assigned to a female GP, a GP with a lower patient load, or a PHC team with a lower percentage of patients older than 65 years. On average, individuals in Navarre were less likely to be screened than those in Catalonia. Hypertension and dyslipidaemia screenings had the least unexplained variability between PHC teams and GPs, respectively, after adjusting for individual and contextual factors. CONCLUSIONS: Of the studied screenings, those for obesity, tobacco, and alcohol use were the least prevalent. Attention to screening, especially for tobacco and alcohol, can be greatly improved in the PHC setting.


Subject(s)
Mass Screening/statistics & numerical data , Multilevel Analysis/methods , Preventive Medicine/statistics & numerical data , Primary Health Care/statistics & numerical data , Adult , Aged , Alcohol-Related Disorders/diagnosis , Alcohol-Related Disorders/prevention & control , Cross-Sectional Studies , Dyslipidemias/diagnosis , Dyslipidemias/prevention & control , Female , Humans , Hypertension/diagnosis , Hypertension/prevention & control , Male , Mass Screening/methods , Middle Aged , Obesity/diagnosis , Obesity/prevention & control , Prevalence , Preventive Medicine/methods , Primary Health Care/methods , Risk Factors , Spain , Tobacco Use Disorder/diagnosis , Tobacco Use Disorder/prevention & control
9.
Angew Chem Int Ed Engl ; 53(42): 11270-4, 2014 Oct 13.
Article in English | MEDLINE | ID: mdl-25196121

ABSTRACT

Au atoms in contact with TiC(001) undergo significant charge polarization. Strong metal-support interactions make Au/TiC(001) an excellent catalyst for the low-temperature water-gas shift (WGS), with turnover frequencies orders of magnitude larger than those observed for conventional metal/oxide catalysts. DFT calculations indicate that the WGS reaction follows an associative mechanism with HOCO as a key intermediate.

10.
Phys Chem Chem Phys ; 9(2): 311-7, 2007 Jan 14.
Article in English | MEDLINE | ID: mdl-17186074

ABSTRACT

We have studied the adsorption properties of propyne on the Rh(111) surface by means of the generalized gradient approach of density functional theory using periodic slab models. The simulation of the vibrational spectra has permitted us to corroborate and complete the experimental band assignment and to confirm the adsorption site preference. Propyne prefers to sit on a 3-fold hollow site, with the C[triple bond]C axis parallel to a Rh-Rh bond and the molecular plane tilted away from the surface normal. The comparison between the adsorption behaviour of propyne on Rh(111) and on other (111) metal surfaces allows one to provide an explanation for the different reactivity observed experimentally.

11.
J Phys Chem B ; 109(29): 14175-82, 2005 Jul 28.
Article in English | MEDLINE | ID: mdl-16852780

ABSTRACT

The hydrogenation of 1,3-butadiene to different C4H8 species on both Pd(111) and Pt(111) surfaces has been studied by means of periodic slabs and DFT. We report the adsorption structures for the various mono- and dihydrogenated butadiene intermediates adsorbed on both metal surfaces. Radical species are more clearly stabilized on Pt than on Pd. The different pathways leading to these radicals have been investigated and compared to those producing 1-butene and 2-butene species. On palladium, the formation of butenes seems to be clearly favored, in agreement with the high selectivity to butenes observed experimentally. In contrast, the formation of dihydrogenated radical species seems to be competitive with that of butenes on platinum, which could explain its poorer selectivity to butenes and the formation of butane as a primary product.

SELECTION OF CITATIONS
SEARCH DETAIL
...