Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 61(38): e202206399, 2022 Sep 19.
Article in English | MEDLINE | ID: mdl-35781916

ABSTRACT

There has been a rapid rise in interest regarding the advantages of support materials to protect and immobilise molecular catalysts for the carbon dioxide reduction reaction (CO2 RR) in order to overcome the weaknesses of many well-known catalysts in terms of their stability and selectivity. In this Review, the state of the art of different catalyst-support systems for the CO2 RR is discussed with the intention of leading towards standard benchmarking for comparison of such systems across the most relevant supports and immobilisation strategies, taking into account these multiple pertinent metrics, and also enabling clearer consideration of the necessary steps for further progress. The most promising support systems are described, along with a final note on the need for developing more advanced experimental and computational techniques to aid the rational design principles that are prerequisite to prospective industrial upscaling.

2.
Angew Chem Int Ed Engl ; 57(18): 5006-5010, 2018 04 23.
Article in English | MEDLINE | ID: mdl-29488673

ABSTRACT

A cyclic-voltammetry-based screening method for Cp2 TiX-catalyzed reactions is introduced. Our mechanism-based approach enables the study of the influence of various additives on the electrochemically generated active catalyst Cp2 TiX, which is in equilibrium with catalytically inactive [Cp2 TiX2 ]- . Thioureas and ureas are most efficient in the generation of Cp2 TiX in THF. Knowing the precise position of the equilibrium between Cp2 TiX and [Cp2 TiX2 ]- allowed us to identify reaction conditions for the bulk electrolysis of Cp2 TiX2 complexes and for Cp2 TiX-catayzed radical arylations without having to carry out the reactions. Our time- and resource-efficient approach is of general interest for the design of catalytic reactions that proceed in single-electron steps.

SELECTION OF CITATIONS
SEARCH DETAIL
...