Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3662, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38688902

ABSTRACT

Hematopoietic stem cell gene therapy (GT) using a γ-retroviral vector (γ-RV) is an effective treatment for Severe Combined Immunodeficiency due to Adenosine Deaminase deficiency. Here, we describe a case of GT-related T-cell acute lymphoblastic leukemia (T-ALL) that developed 4.7 years after treatment. The patient underwent chemotherapy and haploidentical transplantation and is currently in remission. Blast cells contain a single vector insertion activating the LIM-only protein 2 (LMO2) proto-oncogene, confirmed by physical interaction, and low Adenosine Deaminase (ADA) activity resulting from methylation of viral promoter. The insertion is detected years before T-ALL in multiple lineages, suggesting that further hits occurred in a thymic progenitor. Blast cells contain known and novel somatic mutations as well as germline mutations which may have contributed to transformation. Before T-ALL onset, the insertion profile is similar to those of other ADA-deficient patients. The limited incidence of vector-related adverse events in ADA-deficiency compared to other γ-RV GT trials could be explained by differences in transgenes, background disease and patient's specific factors.


Subject(s)
Adenosine Deaminase , Agammaglobulinemia , Genetic Therapy , Genetic Vectors , Hematopoietic Stem Cell Transplantation , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Proto-Oncogene Mas , Severe Combined Immunodeficiency , Humans , Adenosine Deaminase/deficiency , Adenosine Deaminase/genetics , Genetic Therapy/methods , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Severe Combined Immunodeficiency/therapy , Severe Combined Immunodeficiency/genetics , Genetic Vectors/genetics , Agammaglobulinemia/therapy , Agammaglobulinemia/genetics , Male , Retroviridae/genetics
2.
bioRxiv ; 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38260577

ABSTRACT

Schizophrenia (SCZ) is a genetically heterogenous psychiatric disorder of highly polygenic nature. Correlative evidence from genetic studies indicate that the aggregated effects of distinct genetic risk factor combinations found in each patient converge onto common molecular mechanisms. To prove this on a functional level, we employed a reductionistic cellular model system for polygenic risk by differentiating induced pluripotent stem cells (iPSCs) from 104 individuals with high polygenic risk load and controls into cortical glutamatergic neurons (iNs). Multi-omics profiling identified widespread differences in alternative polyadenylation (APA) in the 3' untranslated region of many synaptic transcripts between iNs from SCZ patients and healthy donors. On the cellular level, 3'APA was associated with a reduction in synaptic density of iNs. Importantly, differential APA was largely conserved between postmortem human prefrontal cortex from SCZ patients and healthy donors, and strongly enriched for transcripts related to synapse biology. 3'APA was highly correlated with SCZ polygenic risk and affected genes were significantly enriched for SCZ associated common genetic variation. Integrative functional genomic analysis identified the RNA binding protein and SCZ GWAS risk gene PTBP2 as a critical trans-acting factor mediating 3'APA of synaptic genes in SCZ subjects. Functional characterization of PTBP2 in iNs confirmed its key role in 3'APA of synaptic transcripts and regulation of synapse density. Jointly, our findings show that the aggregated effects of polygenic risk converge on 3'APA as one common molecular mechanism that underlies synaptic impairments in SCZ.

3.
Nat Commun ; 14(1): 2829, 2023 05 17.
Article in English | MEDLINE | ID: mdl-37198156

ABSTRACT

Human cellular reprogramming to induced pluripotency is still an inefficient process, which has hindered studying the role of critical intermediate stages. Here we take advantage of high efficiency reprogramming in microfluidics and temporal multi-omics to identify and resolve distinct sub-populations and their interactions. We perform secretome analysis and single-cell transcriptomics to show functional extrinsic pathways of protein communication between reprogramming sub-populations and the re-shaping of a permissive extracellular environment. We pinpoint the HGF/MET/STAT3 axis as a potent enhancer of reprogramming, which acts via HGF accumulation within the confined system of microfluidics, and in conventional dishes needs to be supplied exogenously to enhance efficiency. Our data suggest that human cellular reprogramming is a transcription factor-driven process that it is deeply dependent on extracellular context and cell population determinants.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Cellular Reprogramming , Gene Expression Regulation , Transcription Factors/genetics , Transcription Factors/metabolism , Cells, Cultured
4.
Nat Commun ; 14(1): 3086, 2023 05 29.
Article in English | MEDLINE | ID: mdl-37248224

ABSTRACT

Retromer controls cellular homeostasis through regulating integral membrane protein sorting and transport and by controlling maturation of the endo-lysosomal network. Retromer dysfunction, which is linked to neurodegenerative disorders including Parkinson's and Alzheimer's diseases, manifests in complex cellular phenotypes, though the precise nature of this dysfunction, and its relation to neurodegeneration, remain unclear. Here, we perform an integrated multi-omics approach to provide precise insight into the impact of Retromer dysfunction on endo-lysosomal health and homeostasis within a human neuroglioma cell model. We quantify widespread changes to the lysosomal proteome, indicative of broad lysosomal dysfunction and inefficient autophagic lysosome reformation, coupled with a reconfigured cell surface proteome and secretome reflective of increased lysosomal exocytosis. Through this global proteomic approach and parallel transcriptomic analysis, we provide a holistic view of Retromer function in regulating lysosomal homeostasis and emphasise its role in neuroprotection.


Subject(s)
Multiomics , Neuroprotection , Humans , Proteome/metabolism , Proteomics , Endosomes/metabolism , Protein Transport/physiology , Lysosomes/metabolism
5.
Commun Biol ; 5(1): 146, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35177756

ABSTRACT

Genomic imprinting and X chromosome inactivation (XCI) are two prototypical epigenetic mechanisms whereby a set of genes is expressed mono-allelically in order to fine-tune their expression levels. Defects in genomic imprinting have been observed in several neurodevelopmental disorders, in a wide range of tumours and in induced pluripotent stem cells (iPSCs). Single Nucleotide Variants (SNVs) are readily detectable by RNA-sequencing allowing the determination of whether imprinted or X-linked genes are aberrantly expressed from both alleles, although standardised analysis methods are still missing. We have developed a tool, named BrewerIX, that provides comprehensive information about the allelic expression of a large, manually-curated set of imprinted and X-linked genes. BrewerIX does not require programming skills, runs on a standard personal computer, and can analyze both bulk and single-cell transcriptomes of human and mouse cells directly from raw sequencing data. BrewerIX confirmed previous observations regarding the bi-allelic expression of some imprinted genes in naive pluripotent cells and extended them to preimplantation embryos. BrewerIX also identified misregulated imprinted genes in breast cancer cells and in human organoids and identified genes escaping XCI in human somatic cells. We believe BrewerIX will be useful for the study of genomic imprinting and XCI during development and reprogramming, and for detecting aberrations in cancer, iPSCs and organoids. Due to its ease of use to non-computational biologists, its implementation could become standard practice during sample assessment, thus raising the robustness and reproducibility of future studies.


Subject(s)
Alleles , Genes, X-Linked/genetics , Software , Transcriptome/genetics , Animals , Breast Neoplasms , Gene Expression Regulation , Humans , Mice , Single-Cell Analysis
6.
Int J Mol Sci ; 22(8)2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33921709

ABSTRACT

BACKGROUND: Disruption of alternative splicing (AS) is frequently observed in cancer and might represent an important signature for tumor progression and therapy. Exon skipping (ES) represents one of the most frequent AS events, and in non-small cell lung cancer (NSCLC) MET exon 14 skipping was shown to be targetable. METHODS: We constructed neural networks (NN/CNN) specifically designed to detect MET exon 14 skipping events using RNAseq data. Furthermore, for discovery purposes we also developed a sparsely connected autoencoder to identify uncharacterized MET isoforms. RESULTS: The neural networks had a Met exon 14 skipping detection rate greater than 94% when tested on a manually curated set of 690 TCGA bronchus and lung samples. When globally applied to 2605 TCGA samples, we observed that the majority of false positives was characterized by a blurry coverage of exon 14, but interestingly they share a common coverage peak in the second intron and we speculate that this event could be the transcription signature of a LINE1 (Long Interspersed Nuclear Element 1)-MET (Mesenchymal Epithelial Transition receptor tyrosine kinase) fusion. CONCLUSIONS: Taken together, our results indicate that neural networks can be an effective tool to provide a quick classification of pathological transcription events, and sparsely connected autoencoders could represent the basis for the development of an effective discovery tool.


Subject(s)
Deep Learning , Exons/genetics , Genetic Variation/genetics , Humans , Neural Networks, Computer
7.
Int J Mol Sci ; 22(4)2021 Feb 11.
Article in English | MEDLINE | ID: mdl-33670365

ABSTRACT

MicroRNAs (miRNAs) are attractive therapeutic targets and promising candidates as molecular biomarkers for various therapy-resistant tumors. However, the association between miRNAs and drug resistance in melanoma remains to be elucidated. We used an integrative genomic analysis to comprehensively study the miRNA expression profiles of drug-resistant melanoma patients and cell lines. MicroRNA-181a and -181b (miR181a/b) were identified as the most significantly down-regulated miRNAs in resistant melanoma patients and cell lines. Re-establishment of miR-181a/b expression reverses the resistance of melanoma cells to the BRAF inhibitor dabrafenib. Introduction of miR-181 mimics markedly decreases the expression of TFAM in A375 melanoma cells resistant to BRAF inhibitors. Furthermore, melanoma growth was inhibited in A375 and M14 resistant melanoma cells transfected with miR-181a/b mimics, while miR-181a/b depletion enhanced resistance in sensitive cell lines. Collectively, our study demonstrated that miR-181a/b could reverse the resistance to BRAF inhibitors in dabrafenib resistant melanoma cell lines. In addition, miR-181a and -181b are strongly down-regulated in tumor samples from patients before and after the development of resistance to targeted therapies. Finally, melanoma tissues with high miR-181a and -181b expression presented favorable outcomes in terms of Progression Free Survival, suggesting that miR-181 is a clinically relevant candidate for therapeutic development or biomarker-based therapy selection.


Subject(s)
DNA-Binding Proteins/biosynthesis , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Melanoma/metabolism , MicroRNAs/biosynthesis , Mitochondrial Proteins/biosynthesis , Neoplasm Proteins/biosynthesis , RNA, Neoplasm/biosynthesis , Transcription Factors/biosynthesis , Cell Line, Tumor , DNA-Binding Proteins/genetics , Female , Genomics , Humans , Male , Melanoma/genetics , Melanoma/pathology , MicroRNAs/genetics , Mitochondrial Proteins/genetics , Neoplasm Proteins/genetics , RNA, Neoplasm/genetics , Transcription Factors/genetics
8.
Cell Cycle ; 15(21): 2906-2919, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27565373

ABSTRACT

Polo-like kinases (PLKs) control several aspects of eukaryotic cell division and DNA damage response. Remarkably, PLKs are overexpressed in several types of cancer, being therefore a marker of bad prognosis. As such, specific PLK kinase activity inhibitors are already used in clinical trials and the regulation of PLK activation is a relevant topic of cancer research. Phosphorylation of threonine residues in the T-loop of the kinase domain is pivotal for PLKs activation. Here, we show that T238A substitution in the T-loop reduces the kinase activity of Cdc5, the only PLK in Saccharomyces cerevisiae, with minor effect on cell growth in unperturbed conditions. However, the cdc5-T238A cells have increased rate of chromosome loss and gross chromosomal rearrangements, indicating altered genome stability. Moreover, the T238A mutation affects timely localization of Cdc5 to the spindle pole bodies and blocks cell cycle restart after one irreparable double-strand break. In cells responding to alkylating agent metylmethane sulfonate (MMS), the cdc5-T238A mutation reduces the phosphorylation of Mus81-Mms4 resolvase and exacerbates the MMS sensitivity of sgs1Δ cells that accumulate Holliday junctions. Of importance, the previously described checkpoint adaptation defective allele, cdc5-ad does not show reduced kinase activity, defective Mms4 phosphorylation and genetic interaction with sgs1Δ. Our data define the importance of regulating Cdc5 activity through T-loop phosphorylation to preserve genome integrity and respond to DNA damage.


Subject(s)
Cell Cycle Proteins/metabolism , Chromosomal Instability , Chromosomes, Fungal/metabolism , DNA Damage , Protein Serine-Threonine Kinases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Adenoviridae/metabolism , Amino Acid Sequence , Cell Cycle Checkpoints/genetics , Cell Cycle Proteins/chemistry , DNA Breaks, Double-Stranded , DNA Repair , Gene Rearrangement , Genomic Instability , Microbial Viability , Models, Biological , Mutant Proteins/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Spindle Poles/metabolism , Telomere/metabolism , Threonine/metabolism
9.
Dev Biol ; 379(1): 64-75, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23608455

ABSTRACT

Drosophila dMyc (dMyc) is known for its role in cell-autonomous regulation of growth. Here we address its role in the fat body (FB), a metabolic tissue that functions as a sensor of circulating nutrients to control the release of Drosophila Insulin-like peptides (Dilps) from the brain influencing growth and development. Our results show that expression of dMyc in the FB affects development and animal size. Expression of dMyc, but not of CycD/cdk4 or Rheb, in the FB diminishes the ability to retain Drosophila Insulin-like peptide-2 (DILP2) in the brain during starvation, suggesting that expression of dMyc mimics the signal that remotely controls the release of Dilps into the hemolymph. dMyc also affects glucose metabolism and increases the transcription of Glucose-transporter-1 mRNA, and of Hexokinase and Pyruvate-Kinase mRNAs, key regulators of glycolysis. These animals are able to counteract the increased levels of circulating trehalose induced by a high sugar diet leading to the conclusion that dMyc activity in the FB promotes glucose disposal. dMyc expression induces cell autonomous accumulation of triglycerides, which correlates with increased levels of Fatty Acid Synthase and Acetyl CoA Carboxylase mRNAs, enzymes responsible for lipid synthesis. We also found the expression of Stearoyl-CoA desaturase, Desat1 mRNA significantly higher in FB overexpressing dMyc. Desat1 is an enzyme that is necessary for monosaturation and production of fatty acids, and its reduction affects dMyc's ability to induce fat storage and resistance to animal survival. In conclusion, here we present novel evidences for dMyc function in the Drosophila FB in controlling systemic growth. We discovered that dMyc expression triggers cell autonomous mechanisms that control glucose and lipid metabolism to favor the storage of nutrients (lipids and sugars). In addition, the regulation of Desat1 controls the synthesis of triglycerides in FB and this may affect the humoral signal that controls DILP2 release in the brain.


Subject(s)
DNA-Binding Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila/growth & development , Fat Body/metabolism , Fatty Acid Desaturases/metabolism , Transcription Factors/metabolism , Animals , Body Size , Brain/metabolism , DNA-Binding Proteins/genetics , Drosophila/enzymology , Drosophila/metabolism , Drosophila Proteins/genetics , Fat Body/cytology , Fat Body/enzymology , Fatty Acid Desaturases/genetics , Female , Food Deprivation , Gene Expression Regulation, Developmental , Gene Expression Regulation, Enzymologic , Glucose/metabolism , Hemolymph/metabolism , Insulin/metabolism , Larva/enzymology , Larva/genetics , Larva/growth & development , Larva/metabolism , Lipid Metabolism , Neuropeptides , RNA Interference , RNA, Messenger/genetics , RNA, Messenger/metabolism , Survival Analysis , Time Factors , Transcription Factors/genetics , Trehalose/metabolism , Triglycerides/metabolism , Wings, Animal/growth & development , Wings, Animal/metabolism
10.
BMC Biol ; 9: 65, 2011 Sep 27.
Article in English | MEDLINE | ID: mdl-21951762

ABSTRACT

BACKGROUND: Genetic studies in Drosophila melanogaster reveal an important role for Myc in controlling growth. Similar studies have also shown how components of the insulin and target of rapamycin (TOR) pathways are key regulators of growth. Despite a few suggestions that Myc transcriptional activity lies downstream of these pathways, a molecular mechanism linking these signaling pathways to Myc has not been clearly described. Using biochemical and genetic approaches we tried to identify novel mechanisms that control Myc activity upon activation of insulin and TOR signaling pathways. RESULTS: Our biochemical studies show that insulin induces Myc protein accumulation in Drosophila S2 cells, which correlates with a decrease in the activity of glycogen synthase kinase 3-beta (GSK3ß ) a kinase that is responsible for Myc protein degradation. Induction of Myc by insulin is inhibited by the presence of the TOR inhibitor rapamycin, suggesting that insulin-induced Myc protein accumulation depends on the activation of TOR complex 1. Treatment with amino acids that directly activate the TOR pathway results in Myc protein accumulation, which also depends on the ability of S6K kinase to inhibit GSK3ß activity. Myc upregulation by insulin and TOR pathways is a mechanism conserved in cells from the wing imaginal disc, where expression of Dp110 and Rheb also induces Myc protein accumulation, while inhibition of insulin and TOR pathways result in the opposite effect. Our functional analysis, aimed at quantifying the relative contribution of Myc to ommatidial growth downstream of insulin and TOR pathways, revealed that Myc activity is necessary to sustain the proliferation of cells from the ommatidia upon Dp110 expression, while its contribution downstream of TOR is significant to control the size of the ommatidia. CONCLUSIONS: Our study presents novel evidence that Myc activity acts downstream of insulin and TOR pathways to control growth in Drosophila. At the biochemical level we found that both these pathways converge at GSK3ß to control Myc protein stability, while our genetic analysis shows that insulin and TOR pathways have different requirements for Myc activity during development of the eye, suggesting that Myc might be differentially induced by these pathways during growth or proliferation of cells that make up the ommatidia.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Glycogen Synthase Kinase 3/metabolism , Insulin/metabolism , Proto-Oncogene Proteins c-myc/genetics , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Animals , Cell Line , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Eye/growth & development , Eye/metabolism , Gene Expression Regulation, Developmental , Glycogen Synthase Kinase 3 beta , Imaginal Discs/growth & development , Imaginal Discs/metabolism , Protein Stability , Proto-Oncogene Proteins c-myc/metabolism , Wings, Animal/growth & development , Wings, Animal/metabolism
11.
Mol Cell Biol ; 29(12): 3424-34, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19364825

ABSTRACT

In the present study, we report that ubiquitin-mediated degradation of dMyc, the Drosophila homologue of the human c-myc proto-oncogene, is regulated in vitro and in vivo by members of the casein kinase 1 (CK1) family and by glycogen synthase kinase 3beta (GSK3beta). Using Drosophila S2 cells, we demonstrate that CK1alpha promotes dMyc ubiquitination and degradation with a mechanism similar to the one mediated by GSK3beta in vertebrates. Mutation of ck1alpha or -epsilon or sgg/gsk3beta in Drosophila wing imaginal discs results in the accumulation of dMyc protein, suggesting a physiological role for these kinases in vivo. Analysis of the dMyc amino acid sequence reveals the presence of conserved domains containing potential phosphorylation sites for mitogen kinases, GSK3beta, and members of the CK1 family. We demonstrate that mutations of specific residues within these phosphorylation domains regulate dMyc protein stability and confer resistance to degradation by CK1alpha and GSK3beta kinases. Expression of the dMyc mutants in the compound eye of the adult fly results in a visible defect that is attributed to the effect of dMyc on growth, cell death, and inhibition of ommatidial differentiation.


Subject(s)
Casein Kinase 1 epsilon/metabolism , Casein Kinase Ialpha/metabolism , DNA-Binding Proteins/metabolism , Drosophila Proteins/metabolism , Glycogen Synthase Kinase 3/metabolism , Transcription Factors/metabolism , Ubiquitin/metabolism , Amino Acid Sequence , Animals , Animals, Genetically Modified , Casein Kinase 1 epsilon/genetics , Casein Kinase Ialpha/genetics , Cell Line , Conserved Sequence , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Eye/growth & development , Eye/metabolism , Genes, Insect , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3 beta , Humans , Mutagenesis, Site-Directed , Protein Structure, Tertiary , Proto-Oncogene Mas , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Transcription Factors/chemistry , Transcription Factors/genetics , Wings, Animal/growth & development , Wings, Animal/metabolism , Wnt1 Protein/genetics , Wnt1 Protein/metabolism
12.
BMC Mol Biol ; 8: 15, 2007 Feb 28.
Article in English | MEDLINE | ID: mdl-17328797

ABSTRACT

BACKGROUND: In eukaryotic cells, each molecule of H/ACA small nucleolar RNA (snoRNA) assembles with four evolutionarily conserved core proteins to compose a specific ribonucleoprotein particle. One of the four core components has pseudouridine synthase activity and catalyzes the conversion of a selected uridine to pseudouridine. Members of the pseudouridine synthase family are highly conserved. In addition to catalyzing pseudouridylation of target RNAs, they carry out a variety of essential functions related to ribosome biogenesis and, in mammals, to telomere maintenance. To investigate further the molecular mechanisms underlying the expression of pseudouridine synthase genes, we analyzed the transcriptional activity of the Drosophila member of this family in great detail. RESULTS: The Drosophila gene for pseudouridine synthase, minifly/Nop60b (mfl), encodes two novel mRNAs ending at a downstream poly(A) site. One species is characterized only by an extended 3'-untranslated region (3'UTR), while a minor mRNA encodes a variant protein that represents the first example of an alternative subform described for any member of the family to date. The rare spliced variant is detected mainly in females and is predicted to have distinct functional properties. We also report that a cluster comprising four isoforms of a C/D box snoRNA and two highly related copies of a small ncRNA gene of unknown function is intron-encoded at the gene-variable 3'UTRs. Because this arrangement, the alternative 3' ends allow mfl not only to produce two distinct protein subforms, but also to release different ncRNAs. Intriguingly, accumulation of all these intron-encoded RNAs was found to be sex-biased and quantitatively modulated throughout development and, within the ovaries, the ncRNAs of unknown function were found not ubiquitously expressed. CONCLUSION: Our results expand the repertoire of coding/non-coding transcripts derived from the gene encoding Drosophila pseudouridine synthase. This gene exhibits a complex and interlaced organization, and its genetic information may be expressed as different protein subforms and/or ncRNAs that may potentially contribute to its biological functions.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Genes, Insect , Hydro-Lyases/genetics , Nuclear Proteins/genetics , 3' Untranslated Regions/genetics , Alternative Splicing , Amino Acid Sequence , Animals , Drosophila melanogaster/enzymology , Female , Introns/genetics , Male , Molecular Sequence Data , Open Reading Frames , RNA, Messenger/chemistry , RNA, Small Nucleolar/genetics , RNA-Binding Proteins , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...