Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 12(7): e9109, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35866023

ABSTRACT

Ecological context-the biotic and abiotic environment, along with its influence on population mixing dynamics and individual susceptibility-is thought to have major bearing on epidemic outcomes. However, direct comparisons of wildlife disease events in contrasting ecological contexts are often confounded by concurrent differences in host genetics, exposure histories, or pathogen strains. Here, we compare disease dynamics of a Mycoplasma ovipneumoniae spillover event that affected bighorn sheep populations in two contrasting ecological contexts. One event occurred on the herd's home range near the Rio Grande Gorge in New Mexico, while the other occurred in a captive facility at Hardware Ranch in Utah. While data collection regimens varied, general patterns of antibody signal strength and symptom emergence were conserved between the two sites. Symptoms appeared in the captive setting an average of 12.9 days postexposure, average time to seroconversion was 24.9 days, and clinical signs peaked at approximately 36 days postinfection. These patterns were consistent with serological testing and subsequent declines in symptom intensity in the free-ranging herd. At the captive site, older animals exhibited more severe declines in body condition and loin thickness, higher symptom burdens, and slower antibody response to the pathogen than younger animals. Younger animals were more likely than older animals to clear infection by the time of sampling at both sites. The patterns presented here suggest that environment may not be a major determinant of epidemiological outcomes in the bighorn sheep-M. ovipneumoniae system, elevating the possibility that host- or pathogen-factors may be responsible for observed variation.

2.
Science ; 370(6522)2020 12 11.
Article in English | MEDLINE | ID: mdl-33303589

ABSTRACT

Emerging infectious diseases pose one of the greatest threats to human health and biodiversity. Phylodynamics is often used to infer epidemiological parameters essential for guiding intervention strategies for human viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2). Here, we applied phylodynamics to elucidate the epidemiological dynamics of Tasmanian devil facial tumor disease (DFTD), a fatal, transmissible cancer with a genome thousands of times larger than that of any virus. Despite prior predictions of devil extinction, transmission rates have declined precipitously from ~3.5 secondary infections per infected individual to ~1 at present. Thus, DFTD appears to be transitioning from emergence to endemism, lending hope for the continued survival of the endangered Tasmanian devil. More generally, our study demonstrates a new phylodynamic analytical framework that can be applied to virtually any pathogen.


Subject(s)
Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/veterinary , Endemic Diseases/veterinary , Facial Neoplasms/epidemiology , Facial Neoplasms/veterinary , Marsupialia , Animals , Communicable Diseases, Emerging/genetics , Extinction, Biological , Facial Neoplasms/genetics , Phylogeny , Tasmania/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...