Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 13(48): 21511-9, 2011 Dec 28.
Article in English | MEDLINE | ID: mdl-22057224

ABSTRACT

We investigated photoelectrodes based on TiO(2)-polyheptazine hybrid materials. Since both TiO(2) and polyheptazine are extremely chemically stable, these materials are highly promising candidates for fabrication of photoanodes for water photooxidation. The properties of the hybrids were experimentally determined by a careful analysis of optical absorption spectra, luminescence properties and photoelectrochemical measurements, and corroborated by quantum chemical calculations. We provide for the first time clear experimental evidence for the formation of an interfacial charge-transfer complex between polyheptazine (donor) and TiO(2) (acceptor), which is responsible for a significant red shift of absorption and photocurrent response of the hybrid as compared to both of the single components. The direct optical charge transfer from the HOMO of polyheptazine to the conduction band edge of TiO(2) gives rise to an absorption band centered at 2.3 eV (540 nm). The estimated potential of photogenerated holes (+1.7 V vs. NHE, pH 7) allows for photooxidation of water (+0.82 V vs. NHE, pH 7) as evidenced by visible light-driven (λ > 420 nm) evolution of dioxygen on hybrid electrodes modified with IrO(2) nanoparticles as a co-catalyst. The quantum-chemical simulations demonstrate that the TiO(2)-polyheptazine interface is a complex and flexible system energetically favorable for proton-transfer processes required for water oxidation. Apart from water splitting, this type of hybrid materials may also find further applications in a broader research area of solar energy conversion and photo-responsive devices.

2.
J Phys Chem B ; 109(3): 1239-42, 2005 Jan 27.
Article in English | MEDLINE | ID: mdl-16851086

ABSTRACT

We studied the optical properties of sol-gel synthesized porous silica excited by synchrotron radiation in the 4-10 eV range. The spectral and temporal characteristics of the ultraviolet photoluminescence at about 3.7 eV are reported. The UV emission results from the contribution of two different centers: the first one centered at 3.7 eV with a decay time of 2.0 ns and the second one peaked at 3.9 eV with a decay time of 20 ns. We propose to assign the observed luminescence to different interacting surface silanols.


Subject(s)
Silicon Dioxide/chemistry , Gels/chemistry , Gels/radiation effects , Luminescence , Photochemistry , Porosity , Silicon Dioxide/chemical synthesis , Silicon Dioxide/radiation effects , Synchrotrons , Time Factors , Ultraviolet Rays
3.
J Phys Chem B ; 109(30): 14441-4, 2005 Aug 04.
Article in English | MEDLINE | ID: mdl-16852817

ABSTRACT

The optical properties of sol-gel synthesized porous silica excited by synchrotron radiation in the 4-10 eV range of samples with different porosity at 8 K and room temperature are reported. The analysis of the ultraviolet photoluminescence indicate the contributions of two different emitting centers. The spectral and temporal characteristics of the two luminescence bands are reported: emission peaks at about 3.7 and 4.0 eV, excitation channels around 5.4-5.7 and 6.2-6.5 eV, and mean lifetimes of about 17 and 2 ns, respectively. The analysis of the optical properties in samples with different porosity allows us to propose a silanol-related model for the two centers.

SELECTION OF CITATIONS
SEARCH DETAIL
...