Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Development ; 150(5)2023 03 01.
Article in English | MEDLINE | ID: mdl-36762655

ABSTRACT

Changes in ambient temperature immensely affect developmental programs in many species. Plants adapt to high ambient growth temperature in part by vegetative and reproductive developmental reprogramming, known as thermo-morphogenesis. Thermo-morphogenesis is accompanied by massive changes in the transcriptome upon temperature change. Here, we show that transcriptome changes induced by warm ambient temperature require VERNALIZATION INSENSITIVE 3-LIKE 1 (VIL1), a facultative component of the Polycomb repressive complex PRC2, in Arabidopsis. Warm growth temperature elicits genome-wide accumulation of H3K27me3 and VIL1 is necessary for the warm temperature-mediated accumulation of H3K27me3. Consistent with its role as a mediator of thermo-morphogenesis, loss of function of VIL1 results in hypo-responsiveness to warm ambient temperature. Our results show that VIL1 is a major chromatin regulator in responses to high ambient temperature.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant/genetics , Histones/metabolism , Polycomb-Group Proteins , Temperature
2.
G3 (Bethesda) ; 11(10)2021 09 27.
Article in English | MEDLINE | ID: mdl-34568920

ABSTRACT

Accurate genome annotations are essential to modern biology; however, they remain challenging to produce. Variation in gene structure and expression across species, as well as within an organism, make correctly annotating genes arduous; an issue exacerbated by pitfalls in current in silico methods. These issues necessitate complementary approaches to add additional confidence and rectify potential misannotations. Integration of epigenomic data into genome annotation is one such approach. In this study, we utilized sets of histone modification data, which are precisely distributed at either gene bodies or promoters to evaluate the annotation of the Zea mays genome. We leveraged these data genome wide, allowing for identification of annotations discordant with empirical data. In total, 13,159 annotation discrepancies were found in Z. mays upon integrating data across three different tissues, which were corroborated using RNA-based approaches. Upon correction, genes were extended by an average of 2128 base pairs, and we identified 2529 novel genes. Application of this method to five additional plant genomes identified a series of misannotations, as well as identified novel genes, including 13,836 in Asparagus officinalis, 2724 in Setaria viridis, 2446 in Sorghum bicolor, 8631 in Glycine max, and 2585 in Phaseolous vulgaris. This study demonstrates that histone modification data can be leveraged to rapidly improve current genome annotations across diverse plant lineages.


Subject(s)
Histone Code , Sorghum , Genome, Plant , Molecular Sequence Annotation , Sorghum/genetics , Zea mays/genetics
3.
Science ; 373(6555): 655-662, 2021 08 06.
Article in English | MEDLINE | ID: mdl-34353948

ABSTRACT

We report de novo genome assemblies, transcriptomes, annotations, and methylomes for the 26 inbreds that serve as the founders for the maize nested association mapping population. The number of pan-genes in these diverse genomes exceeds 103,000, with approximately a third found across all genotypes. The results demonstrate that the ancient tetraploid character of maize continues to degrade by fractionation to the present day. Excellent contiguity over repeat arrays and complete annotation of centromeres revealed additional variation in major cytological landmarks. We show that combining structural variation with single-nucleotide polymorphisms can improve the power of quantitative mapping studies. We also document variation at the level of DNA methylation and demonstrate that unmethylated regions are enriched for cis-regulatory elements that contribute to phenotypic variation.


Subject(s)
Genome, Plant , Molecular Sequence Annotation , Zea mays/genetics , Centromere/genetics , Chromosome Mapping , Chromosomes, Plant , DNA Methylation , Disease Resistance/genetics , Genes, Plant , Genetic Variation , Genotype , High-Throughput Nucleotide Sequencing , Multifactorial Inheritance/genetics , Phenotype , Plant Diseases , Polymorphism, Single Nucleotide , Regulatory Sequences, Nucleic Acid , Sequence Analysis, DNA , Tetraploidy , Transcriptome , Whole Genome Sequencing
4.
Genetics ; 217(4)2021 04 15.
Article in English | MEDLINE | ID: mdl-33857306

ABSTRACT

Centromeres are defined by the location of Centromeric Histone H3 (CENP-A/CENH3) which interacts with DNA to define the locations and sizes of functional centromeres. An analysis of 26 maize genomes including 110 fully assembled centromeric regions revealed positive relationships between centromere size and genome size. These effects are independent of variation in the amounts of the major centromeric satellite sequence CentC. We also backcrossed known centromeres into two different lines with larger genomes and observed consistent increases in functional centromere sizes for multiple centromeres. Although changes in centromere size involve changes in bound CENH3, we could not mimic the effect by overexpressing CENH3 by threefold. Literature from other fields demonstrate that changes in genome size affect protein levels, organelle size and cell size. Our data demonstrate that centromere size is among these scalable features, and that multiple limiting factors together contribute to a stable centromere size equilibrium.


Subject(s)
Centromere/genetics , Chromatin/genetics , Genome Size , Zea mays/genetics , Centromere/metabolism , Chromatin/metabolism , Genetic Variation , Histones/genetics , Histones/metabolism , Inbreeding , Plant Proteins/genetics , Plant Proteins/metabolism
6.
Methods Mol Biol ; 2072: 101-117, 2020.
Article in English | MEDLINE | ID: mdl-31541441

ABSTRACT

Chromatin immunoprecipitation coupled with sequencing (ChIP-seq) is a widely used method for mapping the genome-wide locations of chromatin-associated proteins. This protocol has been developed and utilized to perform ChIP on histone covalent modifications in various plant species including cereals. DNA and chromatin-associated proteins are crosslinked with formaldehyde. Chromatin is then isolated from nuclei and sheared via sonication. Antibodies targeting the histone modification of interest are incubated with the sheared chromatin and nonspecific interactions are washed away. DNA is purified via phenol-chloroform extraction, end-repaired, ligated to sequencing adapters, and PCR-amplified.


Subject(s)
Chromatin Immunoprecipitation Sequencing , Chromatin/genetics , Chromatin/metabolism , Genome-Wide Association Study , Histones/metabolism , Protein Processing, Post-Translational , Chromatin Immunoprecipitation Sequencing/methods , Epigenesis, Genetic , Gene Expression Regulation, Plant , Genome-Wide Association Study/methods , High-Throughput Nucleotide Sequencing , Plants/genetics , Polymerase Chain Reaction , Sequence Analysis, DNA
7.
Nat Plants ; 5(12): 1250-1259, 2019 12.
Article in English | MEDLINE | ID: mdl-31740772

ABSTRACT

Chromatin accessibility and modification is a hallmark of regulatory DNA, the study of which led to the discovery of cis-regulatory elements (CREs). Here, we characterize chromatin accessibility, histone modifications and sequence conservation in 13 plant species. We identified thousands of putative CREs and revealed that distal CREs are prevalent in plants, especially in species with large and complex genomes. The majority of distal CREs have been moved away from their target genes by transposable-element (TE) proliferation, but a substantial number of distal CREs also seem to be created by TEs. Finally, plant distal CREs are associated with three major types of chromatin signatures that are distinct from metazoans. Taken together, these results suggest that CREs are prevalent in plants, highly dynamic during evolution and function through distinct chromatin pathways to regulate gene expression.


Subject(s)
Chromatin/genetics , Genome, Plant , Plant Proteins/genetics , Plants/genetics , Regulatory Sequences, Nucleic Acid , Chromatin/metabolism , DNA Transposable Elements , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/metabolism , Plants/classification , Plants/metabolism
8.
Nat Plants ; 5(12): 1237-1249, 2019 12.
Article in English | MEDLINE | ID: mdl-31740773

ABSTRACT

Genetic mapping studies on crops suggest that agronomic traits can be controlled by gene-distal intergenic loci. Despite the biological importance and the potential agronomic utility of these loci, they remain virtually uncharacterized in all crop species to date. Here, we provide genetic, epigenomic and functional molecular evidence to support the widespread existence of gene-distal (hereafter, distal) loci that act as long-range transcriptional cis-regulatory elements (CREs) in the maize genome. Such loci are enriched for euchromatic features that suggest their regulatory functions. Chromatin loops link together putative CREs with genes and recapitulate genetic interactions. Putative CREs also display elevated transcriptional enhancer activities, as measured by self-transcribing active regulatory region sequencing. These results provide functional support for the widespread existence of CREs that act over large genomic distances to control gene expression.


Subject(s)
Genome, Plant , Regulatory Elements, Transcriptional , Zea mays/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Promoter Regions, Genetic
9.
Curr Opin Plant Biol ; 42: 90-94, 2018 04.
Article in English | MEDLINE | ID: mdl-29704803

ABSTRACT

The systematic identification of cis-regulatory elements (CREs) in plant genomes is critically important in understanding transcriptional regulation during development and in response to environmental cues. Several genome-wide structure-based methods have been successfully applied to plant genomes in the past few years. Here, we review recent results on the identification and characterization of CREs in multiple plant species and in different biological processes and discuss future applications of chromatin accessibility data to understand the mechanism, function and evolution of transcriptional regulation networks.


Subject(s)
Chromatin/genetics , Genome, Plant/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Genomics
11.
Front Plant Sci ; 6: 327, 2015.
Article in English | MEDLINE | ID: mdl-26042129

ABSTRACT

A long-term goal in plant research is to understand how plants integrate signals from multiple environmental stressors. The importance of salicylic acid (SA) in plant response to biotic and abiotic stress is known, yet the molecular details of the SA-mediated pathways are insufficiently understood. Our recent work identified the peptidases TOP1 and TOP2 as critical components in plant response to pathogens and programmed cell death (PCD). In this study, we investigated the characteristics of TOPs related to the regulation of their enzymatic activity and function in oxidative stress response. We determined that TOP1 and TOP2 interact with themselves and each other and their ability to associate in dimers is influenced by SA and the thiol-based reductant DTT. Biochemical characterization of TOP1 and TOP2 indicated distinct sensitivities to DTT and similarly robust activity under a range of pH values. Treatments of top mutants with Methyl Viologen (MV) revealed TOP1 and TOP2 as a modulators of the plant tolerance to MV, and that exogenous SA alleviates the toxicity of MV in top background. Finally, we generated a TOP-centered computational model of a plant cell whose simulation outputs replicate experimental findings and predict novel functions of TOP1 and TOP2. Altogether, our work indicates that TOP1 and TOP2 mediate plant responses to oxidative stress through spatially separated pathways and positions proteolysis in a network for plant response to diverse stressors.

SELECTION OF CITATIONS
SEARCH DETAIL
...