Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Astrobiology ; 24(1): 1-35, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38150549

ABSTRACT

Lipids are a geologically robust class of organics ubiquitous to life as we know it. Lipid-like soluble organics are synthesized abiotically and have been identified in carbonaceous meteorites and on Mars. Ascertaining the origin of lipids on Mars would be a profound astrobiological achievement. We enumerate origin-diagnostic features and patterns in two acyclic lipid classes, fatty acids (i.e., carboxylic acids) and acyclic hydrocarbons, by collecting and analyzing molecular data reported in over 1500 samples from previously published studies of terrestrial and meteoritic organics. We identify 27 combined (15 for fatty acids, 12 for acyclic hydrocarbons) molecular patterns and structural features that can aid in distinguishing biotic from abiotic synthesis. Principal component analysis (PCA) demonstrates that multivariate analyses of molecular features (16 for fatty acids, 14 for acyclic hydrocarbons) can potentially indicate sample origin. Terrestrial lipids are dominated by longer straight-chain molecules (C4-C34 fatty acids, C14-C46 acyclic hydrocarbons), with predominance for specific branched and unsaturated isomers. Lipid-like meteoritic soluble organics are shorter, with random configurations. Organic solvent-extraction techniques are most commonly reported, motivating the design of our novel instrument, the Extractor for Chemical Analysis of Lipid Biomarkers in Regolith (ExCALiBR), which extracts lipids while preserving origin-diagnostic features that can indicate biogenicity.


Subject(s)
Exobiology , Mars , Exobiology/methods , Fatty Acids/analysis , Carboxylic Acids , Hydrocarbons, Acyclic , Extraterrestrial Environment
2.
NPJ Microgravity ; 9(1): 43, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37308480

ABSTRACT

Space experiments are a technically challenging but a scientifically important part of astrobiology and astrochemistry research. The International Space Station (ISS) is an excellent example of a highly successful and long-lasting research platform for experiments in space, that has provided a wealth of scientific data over the last two decades. However, future space platforms present new opportunities to conduct experiments with the potential to address key topics in astrobiology and astrochemistry. In this perspective, the European Space Agency (ESA) Topical Team Astrobiology and Astrochemistry (with feedback from the wider scientific community) identifies a number of key topics and summarizes the 2021 "ESA SciSpacE Science Community White Paper" for astrobiology and astrochemistry. We highlight recommendations for the development and implementation of future experiments, discuss types of in situ measurements, experimental parameters, exposure scenarios and orbits, and identify knowledge gaps and how to advance scientific utilization of future space-exposure platforms that are either currently under development or in an advanced planning stage. In addition to the ISS, these platforms include CubeSats and SmallSats, as well as larger platforms such as the Lunar Orbital Gateway. We also provide an outlook for in situ experiments on the Moon and Mars, and welcome new possibilities to support the search for exoplanets and potential biosignatures within and beyond our solar system.

3.
ACS Sens ; 8(6): 2309-2318, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37224474

ABSTRACT

We adapted an existing, spaceflight-proven, robust "electronic nose" (E-Nose) that uses an array of electrical resistivity-based nanosensors mimicking aspects of mammalian olfaction to conduct on-site, rapid screening for COVID-19 infection by measuring the pattern of sensor responses to volatile organic compounds (VOCs) in exhaled human breath. We built and tested multiple copies of a hand-held prototype E-Nose sensor system, composed of 64 chemically sensitive nanomaterial sensing elements tailored to COVID-19 VOC detection; data acquisition electronics; a smart tablet with software (App) for sensor control, data acquisition and display; and a sampling fixture to capture exhaled breath samples and deliver them to the sensor array inside the E-Nose. The sensing elements detect the combination of VOCs typical in breath at parts-per-billion (ppb) levels, with repeatability of 0.02% and reproducibility of 1.2%; the measurement electronics in the E-Nose provide measurement accuracy and signal-to-noise ratios comparable to benchtop instrumentation. Preliminary clinical testing at Stanford Medicine with 63 participants, their COVID-19-positive or COVID-19-negative status determined by concomitant RT-PCR, discriminated between these two categories of human breath with a 79% correct identification rate using "leave-one-out" training-and-analysis methods. Analyzing the E-Nose response in conjunction with body temperature and other non-invasive symptom screening using advanced machine learning methods, with a much larger database of responses from a wider swath of the population, is expected to provide more accurate on-the-spot answers. Additional clinical testing, design refinement, and a mass manufacturing approach are the main steps toward deploying this technology to rapidly screen for active infection in clinics and hospitals, public and commercial venues, or at home.


Subject(s)
COVID-19 , Nanostructures , Volatile Organic Compounds , Animals , Humans , Electronic Nose , Reproducibility of Results , COVID-19/diagnosis , Breath Tests/methods , Volatile Organic Compounds/analysis , Mammals
4.
Electrophoresis ; 44(13-14): 1047-1056, 2023 07.
Article in English | MEDLINE | ID: mdl-36966381

ABSTRACT

Capillary electrophoresis (CE) holds great promise as an in situ analytical technique for a variety of applications. However, typical instrumentation operates with open reservoirs (e.g., vials) to accommodate reagents and samples, which is problematic for automated instruments designed for space or underwater applications that may be operated in various orientations. Microgravity conditions add an additional challenge due to the unpredictable position of the headspace (air layer above the liquid) in any two-phase reservoir. One potential solution for these applications is to use a headspace-free, flow-through reservoir design that is sealed and connected to the necessary reagents and samples. Here, we demonstrate a flow-through high-voltage (HV) reservoir for CE that is compatible with automated in situ exploration needs, and which can be electrically isolated from its source fluidics (in order to prevent unwanted leakage current). We also demonstrate how the overall system can be rationally designed based on the operational parameters for CE to prevent electrolysis products generated at the electrode from entering the capillary and interfering with the CE separation. A reservoir was demonstrated with a 19 mm long, 1.8 mm inner diameter channel connecting the separation capillary and the HV electrode. Tests of these reservoirs integrated into a CE system show reproducible CE system operation with a variety of background electrolytes at voltages up to 25 kV. Rotation of the reservoirs, and the system, showed that their performance was independent of the direction of the gravity vector.


Subject(s)
Electrolysis , Electrophoresis, Capillary , Electrophoresis, Capillary/methods , Electrodes
5.
Astrobiology ; 23(6): 637-647, 2023 06.
Article in English | MEDLINE | ID: mdl-33601926

ABSTRACT

Small satellite technologies, particularly CubeSats, are enabling breakthrough research in space. Over the past 15 years, NASA Ames Research Center has developed and flown half a dozen biological CubeSats in low Earth orbit (LEO) to conduct space biology and astrobiology research investigating the effects of the space environment on microbiological organisms. These studies of the impacts of radiation and reduced gravity on cellular processes include dose-dependent interactions with antimicrobial drugs, measurements of gene expression and signaling, and assessment of radiation damage. BioSentinel, the newest addition to this series, will be the first deep space biological CubeSat, its heliocentric orbit extending far beyond the radiation-shielded environment of low Earth orbit. BioSentinel's 4U biosensing payload, the first living biology space experiment ever conducted beyond the Earth-Moon system, will use a microbial bioassay to assess repair of radiation-induced DNA damage in eukaryotic cells over a duration of 6-12 months. Part of a special collection of articles focused on BioSentinel and its science mission, this article describes the design, development, and testing of the biosensing payload's microfluidics and optical systems, highlighting improvements relative to previous CubeSat life-support and bioanalytical measurement technologies.


Subject(s)
Moon , Space Flight , Earth, Planet , Hypogravity , Exobiology
6.
ACS Sens ; 7(8): 2379-2386, 2022 08 26.
Article in English | MEDLINE | ID: mdl-35894870

ABSTRACT

The isomer-specific detection and quantitation of m-, p-, and o-xylene and ethylbenzene, dissolved singly and as mixtures in aqueous solutions at concentrations from 100 to 1200 ppb by volume, is reported for a specifically designed polymer-plasticizer coating on a shear-horizontal surface acoustic wave (SH-SAW) device. The polystyrene-ditridecyl phthalate-blend coating was designed utilizing Hansen solubility parameters and considering the dipole moment and polarizability of the analytical targets and coating components to optimize the affinity of the sensor coating for the four chemical isomers. The two key coating sorption properties, sensitivity and response time constant, are determined by the (slightly different) dipole moments and polarizabilities of the four target analytes: as analyte dipole moment decreases, coating sensitivity increases; as analyte polarizability decreases, coating response time lengthens. Using the measured sensitivities and time constants for the targets, sensor signals were processed with exponentially weighted recursive-least-squares estimation (EW-RLSE) to identify (with near 100% accuracy) and quantify (with ± 5-7% accuracy) the isomers. This impressive performance was achieved by combining the specifically tailored, high-sensitivity coating and an SH-SAW platform (yielding a detection limit of 5 ppb for the analytes) and using the EW-RLS estimator, which estimates unknown parameters accurately even in the presence of measurement noise and for analytes with only minor differences in response. Identification of the xylene isomers is important for applications including environmental monitoring and chemical manufacturing.


Subject(s)
Benzene Derivatives , Xylenes , Water/chemistry
7.
Astrobiology ; 22(2): 158-170, 2022 02.
Article in English | MEDLINE | ID: mdl-35049343

ABSTRACT

With no direct extant-life detection instrumentation included in a space mission since the 1970s, the advancement of new technologies to be included in future space missions is imperative. We developed, optimized, and tested a semi-automated prototype, the microfluidics Microbial Activity MicroAssay (µMAMA). This system metabolically characterizes and detects extant microbial life by way of metabolism-indicator redox dyes. We first evaluated the robustness and sensitivity of six redox dye/buffer combinations, and we then tested their responses to metabolic activity in astrobiological analog high-Arctic samples. We determined that the Biolog Inoculating Fluid (IF)-C and AlamarBlue buffered in IF-0a (aB-IF0a) dye/buffer combinations were optimal, as they detected metabolic activity from the fewest microbial cells (102 cells/mL) while maintaining efficacy over a broad physiochemical range of pH (0-13), temperature (-10°C to 37°C), salinity and perchlorate (tested up to 30%), and in the presence of a Mars regolith simulant (MMS-2). The µMAMA, which incorporated these redox dyes, detected extant active cold-adapted microbial life from high Arctic analog sites, including samples amended with substrates targeting chemolithoautotrophic metabolisms. Given µMAMA's small size (we estimate a complete planetary instrument could occupy as little as 3 L) and potential for automation, it could easily be incorporated into almost any landed platform for life detection missions.


Subject(s)
Mars , Microfluidics , Exobiology , Extraterrestrial Environment , Planets
8.
ACS Sens ; 7(2): 649-657, 2022 02 25.
Article in English | MEDLINE | ID: mdl-35080846

ABSTRACT

A relatively simple design procedure is presented for new, adaptable chemical sensor coatings made from a single polymer-plasticizer pair to detect single or a mixture of chemical compounds (e.g., BTEX, the small aromatic hydrocarbon family). Affinity between coating components and target analytes, expressed through Hansen solubility parameters and relative energy difference values, describes the sensitivity of the resultant coatings to each analyte. While analyte affinity is paramount for plasticizer selection, for the aqueous-phase sensing application described here, it must be traded off with the permanence in the host polymer, i.e., resistance to leaching into the ambient aqueous phase; deleterious effects including coating creep must also be minimized. By varying the polymer:plasticizer mixing ratio, the physical and chemical properties of the resultant coatings can be tuned across a range of sensing properties, in particular the differential response magnitude and rate, for multiple analytes. Together with the measurement of multiple sensor response parameters (relative sensitivity and response time constant) for each coating, this approach allows for identification and quantification of target analytes not previously separable using commercial off-the-shelf (COTS) polymer sensor coatings. Sensing results using a five-sensor array based on five different mixing ratios of a single plasticizer polymer pair (plasticizer: ditridecyl phthalate; polymer: polystyrene) demonstrate unique identification of mixtures of BTEX analytes, including differentiation of the chemical isomers ethylbenzene and total xylene (or "xylenes"), something not previously feasible for separation-free liquid-phase sensing with commercially available polymer coatings. Ultimately, the response of a single optimized sensor coating identified and quantified the components of various mixtures, including identification of likely interferents, using a customized estimation-theory-based multivariate signal-processing technique.


Subject(s)
Hydrocarbons, Aromatic , Polymers , Plasticizers/chemistry , Polymers/chemistry , Water/chemistry , Xylenes
10.
Nano Lett ; 21(1): 651-657, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33283521

ABSTRACT

The global COVID-19 pandemic has changed many aspects of daily lives. Wearing personal protective equipment, especially respirators (face masks), has become common for both the public and medical professionals, proving to be effective in preventing spread of the virus. Nevertheless, a detailed understanding of respirator filtration-layer internal structures and their physical configurations is lacking. Here, we report three-dimensional (3D) internal analysis of N95 filtration layers via X-ray tomography. Using deep learning methods, we uncover how the distribution and diameters of fibers within these layers directly affect contaminant particle filtration. The average porosity of the filter layers is found to be 89.1%. Contaminants are more efficiently captured by denser fiber regions, with fibers <1.8 µm in diameter being particularly effective, presumably because of the stronger electric field gradient on smaller diameter fibers. This study provides critical information for further development of N95-type respirators that combine high efficiency with good breathability.


Subject(s)
COVID-19/prevention & control , N95 Respirators/virology , Pandemics , SARS-CoV-2/ultrastructure , Air Microbiology , COVID-19/transmission , COVID-19/virology , Deep Learning , Filtration/statistics & numerical data , Humans , Imaging, Three-Dimensional , Microscopy, Electron, Scanning , N95 Respirators/standards , N95 Respirators/statistics & numerical data , Nanoparticles/ultrastructure , Pandemics/prevention & control , Particle Size , Polypropylenes , Porosity , Textiles/virology , Tomography, X-Ray
11.
Life Sci Space Res (Amst) ; 24: 18-24, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31987476

ABSTRACT

We report the results of the EcAMSat (Escherichia coli Antimicrobial Satellite) autonomous space flight experiment, investigating the role of σs in the development of antibiotic resistance in uropathogenic E. coli (UPEC) in microgravity (µ-g). The presence of σs, encoded by the rpoS gene, has been shown to increase antibiotic resistance in Earth gravity, but it was unknown if this effect occurs in µ-g. Two strains, wildtype (WT) UPEC and its isogenic ΔrpoS mutant, were grown to stationary phase aboard EcAMSat, an 11-kg small satellite, and in a parallel ground-based control experiment; cell growth rates for the two strains were found to be unaltered by µ-g. After starvation for over 24 h, stationary-phase cells were incubated with three doses of gentamicin (Gm), a common treatment for urinary tract infections (which have been reported in astronauts). Cellular metabolic activity was measured optically using the redox-based indicator alamarBlue (aB): both strains exhibited slower metabolism in µ-g, consistent with results from previous smallsat missions. The results also showed that µ-g did not enhance UPEC resistance to Gm; in fact, both strains were more susceptible to Gm in µ-g. It was also found, via a second ground-control experiment, that multi-week storage in the payload hardware stressed the cells, potentially obscuring small differential effects of the antibiotic between WT and mutant and/or between µ-g and ground. Overall, results showed that the ∆rpoS mutant was 34-37% less metabolically active than the WT for four different sets of conditions: ground without Gm, ground with Gm; µ-g without Gm, µ-g with Gm. We conclude therefore that the rpoS gene and its downstream products are important therapeutic targets for treating bacterial infections in space, much as they are on the ground.


Subject(s)
Bacterial Proteins/physiology , Drug Resistance, Bacterial , Sigma Factor/physiology , Uropathogenic Escherichia coli/drug effects , Weightlessness , Anti-Bacterial Agents/pharmacology , Space Flight , Uropathogenic Escherichia coli/growth & development , Uropathogenic Escherichia coli/physiology
12.
ACS Sens ; 4(6): 1682-1690, 2019 06 28.
Article in English | MEDLINE | ID: mdl-31117366

ABSTRACT

Most chemical sensors are only partially selective to any specific target analyte(s), making identification and quantification of analyte mixtures challenging, a problem often addressed using arrays of partially selective sensors. This work presents and experimentally verifies a signal-processing technique based on estimation theory for online identification and quantification of multiple analytes using only the response data collected from a single polymer-coated sensor device. The demonstrated technique, based on multiple stages of exponentially weighted recursive least-squares estimation (EW-RLSE), first determines which of the analytes included in the sensor response model are absent from the mixture being analyzed; these are then eliminated from the model prior to executing the final stage of EW-RLSE, in which the sample's constituent analytes are more accurately quantified. The overall method is based on a sensor response model with specific parameters describing each coating-analyte pair and requires no initial assumptions regarding the concentrations of the analytes in a given sample. The technique was tested using the measured responses of polymer-coated shear-horizontal surface acoustic wave devices to multi-analyte mixtures of benzene, toluene, ethylbenzene, xylenes, and 1,2,4-trimethylbenzene in water. The results demonstrate how this method accurately identifies and quantifies the analytes present in a sample using the measured response of just a single sensor device. This effective, simple, lower-cost alternative to sensor arrays needs no arduous training protocol, just measurement of the response characteristics of each individual target analyte and the likely interferents and/or classes thereof.


Subject(s)
Benzene Derivatives/analysis , Complex Mixtures/analysis , Algorithms , Chemistry Techniques, Analytical/methods , Least-Squares Analysis , Models, Chemical , Polymers/chemistry , Sound
13.
Biophys J ; 116(6): 1136-1151, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30824114

ABSTRACT

The process of platelet adhesion is initiated by glycoprotein (GP)Ib and GPIIbIIIa receptors on the platelet surface binding with von Willebrand factor on the vascular walls. This initial adhesion and detachment of a single platelet is a complex process that involves multiple bonds forming and breaking and is strongly influenced by the surrounding blood-flow environment. In addition to bond-level kinetics, external factors such as shear rate, hematocrit, and GPIb and GPIIbIIIa receptor densities have also been identified as influencing the platelet-level rate constants in separate studies, but this still leaves a gap in understanding between these two length scales. In this study, we investigate the fundamental relationship of the dynamics of platelet adhesion, including these interrelating factors, using a coherent strategy. We build a, to our knowledge, novel and computationally efficient multiscale model accounting for multibond kinetics and hydrodynamic effects due to the flow of a cellular suspension. The model predictions of platelet-level kinetics are verified by our microfluidic experiments, which systematically investigate the role of each external factor on platelet adhesion in an in vitro setting. We derive quantitative formulas describing how the rates of platelet adhesion, translocation, and detachment are defined by the molecular-level kinetic constants, the local platelet concentration near the reactive surface determined by red-blood-cell migration, the platelet effective reactive area due to its tumbling motion, and the platelet surface receptor density. Furthermore, if any of these aspects involved have abnormalities, e.g., in a disease condition, our findings also have clinical relevance in predicting the resulting change in the adhesion dynamics, which is essential to hemostasis and thrombosis.


Subject(s)
Models, Biological , Platelet Adhesiveness , von Willebrand Factor/metabolism , Hematocrit , Humans , Hydrodynamics , Kinetics , Shear Strength , Surface Properties
14.
Blood ; 133(12): 1371-1377, 2019 03 21.
Article in English | MEDLINE | ID: mdl-30642918

ABSTRACT

Blood type O is associated with a lower risk of myocardial infarction. Platelets play a critical role in myocardial infarction. It is not known whether the expression of blood group antigens on platelet proteins alters platelet function; we hypothesized that platelet function would be different between donors with blood type O and those with non-O. To address this hypothesis, we perfused blood from healthy type O donors (n = 33) or non-O donors (n = 54) over pooled plasma derived von Willebrand factor (VWF) protein and purified blood type-specific VWF at arterial shear and measured platelet translocation dynamics. We demonstrate for the first time that type O platelets travel farther at greater speeds before forming stable bonds with VWF. To further characterize these findings, we used a novel analytical model of platelet interaction. Modeling revealed that the kinetics for GPIb/VWF binding rate are significantly lower for type O compared with non-O platelets. Our results demonstrate that platelets from type O donors interact less with VWF at arterial shear than non-O platelets. Our results suggest a potential mechanism for the reduced risk of myocardial infarction associated with blood type O.


Subject(s)
Blood Group Antigens/physiology , Blood Platelets/physiology , Platelet Adhesiveness , Platelet Aggregation , Platelet Glycoprotein GPIb-IX Complex/metabolism , von Willebrand Factor/metabolism , Female , Follow-Up Studies , Humans , Kinetics , Male , Protein Binding
15.
Life (Basel) ; 10(1)2019 Dec 29.
Article in English | MEDLINE | ID: mdl-31905771

ABSTRACT

We report here complete 6-month results from the orbiting Space Environment Survivability of Living Organisms (SESLO) experiment. The world's first and only long-duration live-biology cubesat experiment, SESLO was executed by one of two 10-cm cube-format payloads aboard the 5.5-kg O/OREOS (Organism/Organic Exposure to Orbital Stresses) free-flying nanosatellite, which launched to a 72°-inclination, 650-km Earth orbit in 2010. The SESLO experiment measured the long-term survival, germination, metabolic, and growth responses of Bacillus subtilis spores exposed to microgravity and ionizing radiation including heavy-ion bombardment. A pair of radiation dosimeters (RadFETs, i.e., radiation-sensitive field-effect transistors) within the SESLO payload provided an in-situ dose rate estimate of 6-7.6 mGy/day throughout the mission. Microwells containing samples of dried spores of a wild-type B. subtilis strain and a radiation-sensitive mutant deficient in Non-Homologoous End Joining (NHEJ) were rehydrated after 14, 91, and 181 days in space with nutrient medium containing with the redox dye alamarBlue (aB), which changes color upon reaction with cellular metabolites. Three-color transmitted light intensity measurements of all microwells were telemetered to Earth within days of each 24-hour growth experiment. At 14 and 91 days, spaceflight samples germinated, grew, and metabolized significantly more slowly than matching ground-control samples, as measured both by aB reduction and optical density changes; these rate differences notwithstanding, the final optical density attained was the same in both flight and ground samples. After 181 days in space, spore germination and growth appeared hindered and abnormal. We attribute the differences not to an effect of the space environment per se, as both spaceflight and ground-control samples exhibited the same behavior, but to a pair of ~15-day thermal excursions, after the 91-day measurement and before the 181-day experiment, that peaked above 46 °C in the SESLO payload. Because the payload hardware operated nominally at 181 days, the growth issues point to heat damage, most likely to component(s) of the growth medium (RPMI 1640 containing aB) or to biocompatibility issues caused by heat-accelerated outgassing or leaching of harmful compounds from components of the SESLO hardware and electronics.

16.
Platelets ; 30(6): 737-742, 2019.
Article in English | MEDLINE | ID: mdl-30252557

ABSTRACT

Despite a fivefold increased risk of thromboembolism in patients with cancer, the mechanism of arterial thromboembolism is poorly understood. To address this, we investigated platelet function in cancer patients and healthy controls using an assay that mimics the arterial vasculature. Blood samples from cancer patients (n = 36) and healthy controls (n = 22) were perfused through custom-made parallel-plate flow chambers coated with von Willebrand factor (VWF) under arterial shear (1,500 s-1). Multiparameter measurements of platelet interactions with the immobilized VWF surface were recorded by digital-image microscopy and analyzed using custom-designed platelet-tracking software. Six measured parameters that characterize in detail the surface motion and surface binding of several hundred platelets per blood sample differed significantly in those with cancer from the healthy donors. In particular, it was found that patients with cancer had decreased numbers of platelets interacting, translocating and adhering to VWF. There were also reductions in the speed and distances that platelets traveled on VWF in comparison to healthy controls. Platelet function differed between those with early-stage cancer compared to those with later stage cancer. Patients with advanced cancer had an increased number of platelets stably adhering to VWF and greater platelet surface coverage after a given time of interaction. To the best of our knowledge, our results demonstrate for the first time that dynamic platelet function is markedly different in patients with cancer compared to healthy donors.


Subject(s)
Neoplasms/blood , Platelet Function Tests/methods , von Willebrand Factor/metabolism , Female , Humans , Male , Middle Aged , Tissue Donors
17.
ACS Sens ; 3(9): 1656-1665, 2018 09 28.
Article in English | MEDLINE | ID: mdl-30117735

ABSTRACT

A new approach is reported to detect and quantify the members of a group of small-aromatic-molecule target analytes: benzene, toluene, ethylbenzene, and xylenes (BTEX), dissolved in water, in the presence of interferents, using only the data collected from a single polymer-coated SH-SAW (shear horizontal surface acoustic wave) device and a two-stage adaptive estimation scheme. This technique is composed of exponentially weighted recursive least-squares estimation (EW-RLSE) and a bank of Kalman filters (BKFs) and does not require any prior knowledge of the initial concentration range of the target analytes. The proposed approach utilizes the transient sensor response to sorption and/or desorption of the analytes as well as the error range associated with the response time constants to provide more information about the analyte-specific interactions with the polymer film. The approach assumes that the sensor response to contaminated groundwater is a linear combination of the responses to the single target analytes, the interferents that interact with the selected polymer sensor coatings, and measurement noise. The proposed technique was tested using actual sensor responses to contaminated groundwater samples containing multiple BTEX compounds with concentrations ranging from 10 to 2000 parts per billion, as well as common interferents including ethanol, 1,2,4-trimethylbenzene, naphthalene, n-heptane, and MTBE (methyl tert-butyl ether). Estimated concentration values, accurate to ±10% for benzene/toluene and ±15% for ethylbenzene/xylenes, are obtained in near-real time. The utilization of sorption and/or desorption data enables detection and quantification of BTEX compounds with improved accuracy, high tolerance to measurement noise, and improved chemical selectivity.


Subject(s)
Benzene Derivatives/analysis , Epoxy Resins/chemistry , Polyenes/chemistry , Polymers/chemistry , Water Pollutants, Chemical/analysis , Acoustics , Chemistry Techniques, Analytical/instrumentation , Chemistry Techniques, Analytical/methods , Groundwater/analysis
18.
Life Sci Space Res (Amst) ; 15: 1-10, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29198308

ABSTRACT

Human immune response is compromised and bacteria can become more antibiotic resistant in space microgravity (MG). We report that under low-shear modeled microgravity (LSMMG), stationary-phase uropathogenic Escherichia coli (UPEC) become more resistant to gentamicin (Gm), and that this increase is dependent on the presence of σs (a transcription regulator encoded by the rpoS gene). UPEC causes urinary tract infections (UTIs), reported to afflict astronauts; Gm is a standard treatment, so these findings could impact astronaut health. Because LSMMG findings can differ from MG, we report preparations to examine UPEC's Gm sensitivity during spaceflight using the E. coli Anti-Microbial Satellite (EcAMSat) as a free-flying "nanosatellite" in low Earth orbit. Within EcAMSat's payload, a 48-microwell fluidic card contains and supports study of bacterial cultures at constant temperature; optical absorbance changes in cell suspensions are made at three wavelengths for each microwell and a fluid-delivery system provides growth medium and predefined Gm concentrations. Performance characterization is reported here for spaceflight prototypes of this payload system. Using conventional microtiter plates, we show that Alamar Blue (AB) absorbance changes can assess the Gm effect on E. coli viability, permitting telemetric transfer of the spaceflight data to Earth. Laboratory results using payload prototypes are consistent with wellplate and flask findings of differential sensitivity of UPEC and its ∆rpoS strain to Gm. if σs plays the same role in space MG as in LSMMG and Earth gravity, countermeasures discovered in recent Earth studies (aimed at weakening the UPEC antioxidant defense) to control UPEC infections would prove useful also in space flights. Further, EcAMSat results should clarify inconsistencies from previous space experiments on bacterial antibiotic sensitivity and other issues.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Drug Resistance, Bacterial , Gentamicins/pharmacology , Sigma Factor/genetics , Uropathogenic Escherichia coli/growth & development , Weightlessness , Cell Survival/drug effects , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Humans , Microbial Viability , Mutation , Urinary Tract Infections/drug therapy , Urinary Tract Infections/microbiology , Uropathogenic Escherichia coli/drug effects , Uropathogenic Escherichia coli/genetics
19.
PLoS One ; 12(9): e0183480, 2017.
Article in English | MEDLINE | ID: mdl-28877184

ABSTRACT

The International Space Station (ISS) National Laboratory is dedicated to studying the effects of space on life and physical systems, and to developing new science and technologies for space exploration. A key aspect of achieving these goals is to operate the ISS National Lab more like an Earth-based laboratory, conducting complex end-to-end experimentation, not limited to simple microgravity exposure. Towards that end NASA developed a novel suite of molecular biology laboratory tools, reagents, and methods, named WetLab-2, uniquely designed to operate in microgravity, and to process biological samples for real-time gene expression analysis on-orbit. This includes a novel fluidic RNA Sample Preparation Module and fluid transfer devices, all-in-one lyophilized PCR assays, centrifuge, and a real-time PCR thermal cycler. Here we describe the results from the WetLab-2 validation experiments conducted in microgravity during ISS increment 47/SPX-8. Specifically, quantitative PCR was performed on a concentration series of DNA calibration standards, and Reverse Transcriptase-quantitative PCR was conducted on RNA extracted and purified on-orbit from frozen Escherichia coli and mouse liver tissue. Cycle threshold (Ct) values and PCR efficiencies obtained on-orbit from DNA standards were similar to Earth (1 g) controls. Also, on-orbit multiplex analysis of gene expression from bacterial cells and mammalian tissue RNA samples was successfully conducted in about 3 h, with data transmitted within 2 h of experiment completion. Thermal cycling in microgravity resulted in the trapping of gas bubbles inside septa cap assay tubes, causing small but measurable increases in Ct curve noise and variability. Bubble formation was successfully suppressed in a rapid follow-up on-orbit experiment using standard caps to pressurize PCR tubes and reduce gas release during heating cycles. The WetLab-2 facility now provides a novel operational on-orbit research capability for molecular biology and demonstrates the feasibility of more complex wet bench experiments in the ISS National Lab environment.


Subject(s)
Gene Expression Regulation , Multiplex Polymerase Chain Reaction/methods , RNA/isolation & purification , Real-Time Polymerase Chain Reaction/methods , Spacecraft , Weightlessness , Animals , Escherichia coli/genetics , Freeze Drying , Liver/metabolism , Mice , RNA/genetics , Reproducibility of Results
20.
Sci Rep ; 7(1): 6354, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28743915

ABSTRACT

Platelet function in pregnancy is poorly understood. Previous studies of platelet function in pregnancy have used non-physiological assays of platelet function with conflicting results. This study using a physiological assay of platelet function investigated platelet interactions with von Willebrand Factor (VWF) in blood from healthy pregnant women and healthy non-pregnant controls. Blood samples (200 µl) from third-trimester pregnancies (n = 21) and non-pregnant controls (n = 21) were perfused through custom-made parallel-plate flow chambers coated with VWF under arterial shear (1,500 s-1). Multi-parameter measurements of platelet interactions with the immobilized VWF surface were recorded by digital-image microscopy and analysed using custom-designed platelet-tracking software. Platelet interactions with VWF decreased in healthy third-trimester pregnant participants relative to controls. This effect is most likely due to haemodilution which occurs physiologically during pregnancy. Interestingly, platelets in blood from pregnant participants translocated more slowly on VWF under arterial-shear conditions. These decreases in platelet translocation speed were independent of haemodilution, suggesting intrinsic changes in platelet function with pregnancy.


Subject(s)
Blood Platelets/physiology , Pregnancy Trimester, Third/blood , von Willebrand Factor/metabolism , Adult , Female , Healthy Volunteers , Hemodilution , Hemostasis , Humans , Pregnancy , Shear Strength , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...