Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(24): 29618-29635, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37289140

ABSTRACT

A promising approach for advanced bone implants is the deposition on titanium surfaces of organic thin films with improved therapeutic performances. Herein, we reported the efficient dip-coating deposition of caffeic acid (CA)-based films on both polished and chemically pre-treated Ti6Al4V alloys by exploiting hexamethylenediamine (HMDA) crosslinking ability. The formation of benzacridine systems, resulting from the interaction of CA with the amino groups of HMDA, as reported in previous studies, was suggested by the yellow/green color of the coatings. The coated surfaces were characterized by means of the Folin-Ciocalteu method, fluorescence microscopy, water contact angle measurements, X-ray photoelectron spectroscopy (XPS), zeta-potential measurements, and Fourier transform infrared spectroscopy, confirming the presence of a uniform coating on the titanium surfaces. The optimal mechanical adhesion of the coating, especially on the chemically pre-treated substrate, was also demonstrated by the tape adhesion test. Interestingly, both films exhibited marked antioxidant properties (2,2-diphenyl-1-picrylhydrazyl and ferric reducing antioxidant power assays) that persisted over time and were not lost even after prolonged storage of the material. The feature of the coatings in terms of the exposed groups (XPS and zeta potential titration evidence) was apparently dependent on the surface pre-treatment of the titanium substrate. Cytocompatibility, scavenger antioxidant activity, and antibacterial properties of the developed coatings were evaluated. The most promising results were obtained in the case of the chemically pre-treated CA/HMDA-based coated surface that showed good cytocompatibility and high reactive oxygen species' scavenging ability, preventing their intracellular accumulation under pro-inflammatory conditions; moreover, an anti-fouling effect preventing the formation of 3D biofilm-like bacterial aggregates was observed by scanning electron microscopy. These results open new perspectives for the development of innovative titanium surfaces with thin coatings from naturally occurring phenols for bone contact implants.


Subject(s)
Coated Materials, Biocompatible , Titanium , Alloys/pharmacology , Antioxidants/pharmacology , Coated Materials, Biocompatible/pharmacology , Coated Materials, Biocompatible/chemistry , Surface Properties , Titanium/pharmacology , Titanium/chemistry , Humans
2.
Nanomaterials (Basel) ; 12(17)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36079954

ABSTRACT

The study aimed to identify an effective mechanism of adsorption of polyphenols on a nano-textured Ti surface and to evaluate the osteogenic differentiation on it. The source of polyphenols was a natural extract from red grape pomace. A chemical etching was used to form an oxide layer with a nanoscale texture on Ti; this layer is hydrophilic, but without hydroxyl groups with high acidic-basic chemical reactivity. The samples were characterized by electron and fluorescence microscopies, UV-Vis spectroscopy, contact angle measurements, zeta potential titration curves, and Folin-Ciocâlteu test. The presence of an adsorbed layer of polyphenols on the functionalized surface, maintaining redox ability, was confirmed by several tests. Consistent with the surface features, the adsorption was maximized by dissolving the extract in a high-amino acid medium, with respect to an inorganic solution, exploiting the high affinity of amino acids for polyphenols and for porous titanium surfaces. The osteogenic differentiation was assessed on an osteoblastic cell line by immunofluorescence, cell viability, expression of key osteoblast markers, and extracellular matrix mineralization. The surfaces functionalized with the extract diluted in the range 1 × 10-5-1 mg/mL resulted in having a greater osteogenic activity for the highest concentration, with lower values of cell viability; higher expression of alkaline phosphatase, bone sialoprotein, and collagen; and lower levels of osteopontin. In conclusion, the functionalization of a nano-textured Ti surface with polyphenols can potentially favor the osteogenic activity of osseointegrated implants.

3.
Langmuir ; 37(51): 14793-14804, 2021 12 28.
Article in English | MEDLINE | ID: mdl-34905366

ABSTRACT

Chitosan is known for its specific antibacterial mechanism and biodegradability, while polyphenols are known for their antioxidant and anti-inflammatory properties: coupling these properties on a surface for bone contact, such as hydroxyapatite, is of great interest. The system developed here allows the combination of hydroxyapatite, chitosan, and polyphenol properties in the same multifunctional biomaterial in order to modulate the host response after implantation. Crosslinked chitosan is used in this research to create a stable coating on hydroxyapatite, and then it is functionalized for a smart release of the polyphenols. The release is higher in inflammatory conditions and lower in physiological conditions. The properties of the coated and functionalized samples are characterized on the as-prepared samples and after the samples are immersed (for 24 h) in solutions, which simulate the inflammatory and physiological conditions. Characterization is performed in order to confirm the presence of polyphenols grafted within the chitosan coating, the stability of grafting as a function of pH, the morphology of the coating and distribution of polyphenols on the surface, and the redox reactivity and radical scavenging activity of the functionalized coating. All the results are in line with previous results, which show a successful coating with chitosan and functionalization with polyphenols. Moreover, the polyphenols have a different release kinetics that is faster in a simulated inflammatory environment compared to that in the physiological environment. Even after the release tests, a fraction of polyphenols are still bound on the surface, maintaining the antioxidant and radical scavenging activity for a longer time. An electrostatic bond occurs between the negative-charged polar groups of polyphenols (carboxyls and/or phenols) and the positive amide groups of the chitosan coating, and the substitution of the crosslinker by the polyphenols occurs during the functionalization process.


Subject(s)
Chitosan , Vitis , Durapatite , Phenols , Polyphenols
4.
Nanomaterials (Basel) ; 11(2)2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33540598

ABSTRACT

This study demonstrates the possibility of forming 3D structures with enhanced thermal conductivity (k) by vat printing a silicone-acrylate based nanocomposite. Polydimethylsiloxane (PDSM) represent a common silicone-based polymer used in several applications from electronics to microfluidics. Unfortunately, the k value of the polymer is low, so a composite is required to be formed in order to increase its thermal conductivity. Several types of fillers are available to reach this result. In this study, boron nitride (BN) nanoparticles were used to increase the thermal conductivity of a PDMS-like photocurable matrix. A digital light processing (DLP) system was employed to form complex structures. The viscosity of the formulation was firstly investigated; photorheology and attenuate total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) analyses were done to check the reactivity of the system that resulted as suitable for DLP printing. Mechanical and thermal analyses were performed on printed samples through dynamic mechanical thermal analysis (DMTA) and tensile tests, revealing a positive effect of the BN nanoparticles. Morphological characterization was performed by scanning electron microscopy (SEM). Finally, thermal analysis demonstrated that the thermal conductivity of the material was improved, maintaining the possibility of producing 3D printable formulations.

SELECTION OF CITATIONS
SEARCH DETAIL
...