Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38045298

ABSTRACT

Allergic asthma is a chronic respiratory disease that initiates in early life, but causal mechanisms are poorly understood. Here we examined how prenatal inflammation shapes allergic asthma susceptibility by reprogramming lung immunity from early development. Induction of Type I interferon-mediated inflammation during development provoked expansion and hyperactivation of group 2 innate lymphoid cells (ILC2s) seeding the developing lung. Hyperactivated ILC2s produced increased IL-5 and IL-13, and were associated with acute Th2 bias, eosinophilia, and decreased Tregs in the lung. The hyperactive ILC2 phenotype was recapitulated by adoptive transfer of a fetal liver precursor following exposure to prenatal inflammation, indicative of developmental programming. Programming of ILC2 function and subsequent lung immune remodeling by prenatal inflammation led to airway dysfunction at baseline and in response to papain, indicating increased asthma susceptibility. Our data provide a link by which developmental programming of progenitors by early-life inflammation drives lung immune remodeling and asthma susceptibility through hyperactivation of lung-resident ILC2s. One Sentence Summary: Prenatal inflammation programs asthma susceptibility by inducing the production of hyperactivated ILC2s in the developing lung.

2.
bioRxiv ; 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37577550

ABSTRACT

Asthma is deemed an inflammatory disease, yet the defining diagnostic symptom is mechanical bronchoconstriction. We previously discovered a conserved process that drives homeostatic epithelial cell death in response to mechanical cell crowding called cell extrusion(1, 2). Here, we show that the pathological crowding of a bronchoconstrictive attack causes so much epithelial cell extrusion that it damages the airways, resulting in inflammation and mucus secretion. While relaxing airways with the rescue treatment albuterol did not impact these responses, inhibiting live cell extrusion signaling during bronchoconstriction prevented all these symptoms. Our findings propose a new etiology for asthma, dependent on the mechanical crowding of a bronchoconstrictive attack. Our studies suggest that blocking epithelial extrusion, instead of ensuing downstream inflammation, could prevent the feed-forward asthma inflammatory cycle.

SELECTION OF CITATIONS
SEARCH DETAIL
...