Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Bioinform Adv ; 3(1): vbad064, 2023.
Article in English | MEDLINE | ID: mdl-37359723

ABSTRACT

Motivation: The visualization of biological data is a fundamental technique that enables researchers to understand and explain biology. Some of these visualizations have become iconic, for instance: tree views for taxonomy, cartoon rendering of 3D protein structures or tracks to represent features in a gene or protein, for instance in a genome browser. Nightingale provides visualizations in the context of proteins and protein features. Results: Nightingale is a library of re-usable data visualization web components that are currently used by UniProt and InterPro, among other projects. The components can be used to display protein sequence features, variants, interaction data, 3D structure, etc. These components are flexible, allowing users to easily view multiple data sources within the same context, as well as compose these components to create a customized view. Availability and implementation: Nightingale examples and documentation are freely available at https://ebi-webcomponents.github.io/nightingale/. It is distributed under the MIT license, and its source code can be found at https://github.com/ebi-webcomponents/nightingale.

2.
Gastroenterology ; 158(1): 189-199, 2020 01.
Article in English | MEDLINE | ID: mdl-31600487

ABSTRACT

BACKGROUND & AIMS: Anti-tumor necrosis factor (anti-TNF) therapies are the most widely used biologic drugs for treating immune-mediated diseases, but repeated administration can induce the formation of anti-drug antibodies. The ability to identify patients at increased risk for development of anti-drug antibodies would facilitate selection of therapy and use of preventative strategies. METHODS: We performed a genome-wide association study to identify variants associated with time to development of anti-drug antibodies in a discovery cohort of 1240 biologic-naïve patients with Crohn's disease starting infliximab or adalimumab therapy. Immunogenicity was defined as an anti-drug antibody titer ≥10 AU/mL using a drug-tolerant enzyme-linked immunosorbent assay. Significant association signals were confirmed in a replication cohort of 178 patients with inflammatory bowel disease. RESULTS: The HLA-DQA1*05 allele, carried by approximately 40% of Europeans, significantly increased the rate of immunogenicity (hazard ratio [HR], 1.90; 95% confidence interval [CI], 1.60-2.25; P = 5.88 × 10-13). The highest rates of immunogenicity, 92% at 1 year, were observed in patients treated with infliximab monotherapy who carried HLA-DQA1*05; conversely the lowest rates of immunogenicity, 10% at 1 year, were observed in patients treated with adalimumab combination therapy who did not carry HLA-DQA1*05. We confirmed this finding in the replication cohort (HR, 2.00; 95% CI, 1.35-2.98; P = 6.60 × 10-4). This association was consistent for patients treated with adalimumab (HR, 1.89; 95% CI, 1.32-2.70) or infliximab (HR, 1.92; 95% CI, 1.57-2.33), and for patients treated with anti-TNF therapy alone (HR, 1.75; 95% CI, 1.37-2.22) or in combination with an immunomodulator (HR, 2.01; 95% CI, 1.57-2.58). CONCLUSIONS: In an observational study, we found a genome-wide significant association between HLA-DQA1*05 and the development of antibodies against anti-TNF agents. A randomized controlled biomarker trial is required to determine whether pretreatment testing for HLA-DQA1*05 improves patient outcomes by helping physicians select anti-TNF and combination therapies. ClinicalTrials.gov ID: NCT03088449.


Subject(s)
Adalimumab/immunology , Crohn Disease/therapy , HLA-DQ alpha-Chains/genetics , Infliximab/immunology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Adalimumab/therapeutic use , Adult , Alleles , Crohn Disease/blood , Female , Genome-Wide Association Study , Heterozygote , Humans , Infliximab/therapeutic use , Male , Middle Aged , Patient Selection , Tumor Necrosis Factor-alpha/immunology , Young Adult
3.
Nature ; 562(7726): 268-271, 2018 10.
Article in English | MEDLINE | ID: mdl-30258228

ABSTRACT

There are thousands of rare human disorders that are caused by single deleterious, protein-coding genetic variants1. However, patients with the same genetic defect can have different clinical presentations2-4, and some individuals who carry known disease-causing variants can appear unaffected5. Here, to understand what explains these differences, we study a cohort of 6,987 children assessed by clinical geneticists to have severe neurodevelopmental disorders such as global developmental delay and autism, often in combination with abnormalities of other organ systems. Although the genetic causes of these neurodevelopmental disorders are expected to be almost entirely monogenic, we show that 7.7% of variance in risk is attributable to inherited common genetic variation. We replicated this genome-wide common variant burden by showing, in an independent sample of 728 trios (comprising a child plus both parents) from the same cohort, that this burden is over-transmitted from parents to children with neurodevelopmental disorders. Our common-variant signal is significantly positively correlated with genetic predisposition to lower educational attainment, decreased intelligence and risk of schizophrenia. We found that common-variant risk was not significantly different between individuals with and without a known protein-coding diagnostic variant, which suggests that common-variant risk affects patients both with and without a monogenic diagnosis. In addition, previously published common-variant scores for autism, height, birth weight and intracranial volume were all correlated with these traits within our cohort, which suggests that phenotypic expression in individuals with monogenic disorders is affected by the same variants as in the general population. Our results demonstrate that common genetic variation affects both overall risk and clinical presentation in neurodevelopmental disorders that are typically considered to be monogenic.


Subject(s)
Genetic Predisposition to Disease , Genetic Variation , Neurodevelopmental Disorders/genetics , Rare Diseases/genetics , Autistic Disorder/genetics , Birth Weight/genetics , Body Height/genetics , Case-Control Studies , Cohort Studies , Developmental Disabilities/genetics , Female , Genome-Wide Association Study , Humans , Intelligence/genetics , Linkage Disequilibrium , Male , Multifactorial Inheritance/genetics , Phenotype , Schizophrenia/genetics
4.
Nat Genet ; 49(2): 256-261, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28067908

ABSTRACT

Genetic association studies have identified 215 risk loci for inflammatory bowel disease, thereby uncovering fundamental aspects of its molecular biology. We performed a genome-wide association study of 25,305 individuals and conducted a meta-analysis with published summary statistics, yielding a total sample size of 59,957 subjects. We identified 25 new susceptibility loci, 3 of which contain integrin genes that encode proteins in pathways that have been identified as important therapeutic targets in inflammatory bowel disease. The associated variants are correlated with expression changes in response to immune stimulus at two of these genes (ITGA4 and ITGB8) and at previously implicated loci (ITGAL and ICAM1). In all four cases, the expression-increasing allele also increases disease risk. We also identified likely causal missense variants in a gene implicated in primary immune deficiency, PLCG2, and a negative regulator of inflammation, SLAMF8. Our results demonstrate that new associations at common variants continue to identify genes relevant to therapeutic target identification and prioritization.


Subject(s)
Genetic Predisposition to Disease/genetics , Inflammatory Bowel Diseases/genetics , Integrins/genetics , Alleles , Genome-Wide Association Study/methods , Humans , Inflammation/genetics , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...