Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
ACS Mater Lett ; 6(5): 1863-1869, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38726043

ABSTRACT

The use of sustainable and safe materials is increasingly in demand for the creation of photonic-based technology. Piezoelectric peptide nanotubes make up a class of safe and sustainable materials. We show that these materials can generate piezoelectric charge through the deformation of oriented molecular dipoles when the tube length is flexed through the application of sound energy. Through the combination of peptide nanotubes with plasmon active nanomaterials, harvesting of low-frequency acoustic sound waves was achieved. This effect was applied to boost surface-enhanced Raman scattering signal detection of analytes, including glucose. This work demonstrates the potential of utilizing sound to boost sensing by using piezoelectric materials.

2.
Anal Methods ; 16(21): 3385-3391, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38751361

ABSTRACT

Cellulose is a sustainable material capable of forming optically active nanoarrays on its surface. We created a composite of cellulose acetate (CA) and graphene oxide (GO), by mixing GO (0.1 mg mL-1) into CA. This was then imprinted with nanoscale surface features that form Bragg-like modes in resonance with the excitation laser when a thin layer of silver is vapor deposited onto the surface of the substrate. The addition of GO leads to improved surface-enhanced Raman scattering (SERS) signal strengths, obtaining an average SERS signal increase of 1.4-fold following the inclusion of GO. The combination of photonic and electromagnetic effects with charge transfer-based processes that support the SERS chemical mechanism and the possible presence of electromagnetic hot spots from the roughened surface results in an enhanced SERS signal strength when GO is added. This work shows the potential for nanoimprinted graphene oxide/cellulose acetate composites as flexible sensor platforms to detect target molecules.

3.
ACS Omega ; 8(7): 6318-6324, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36844575

ABSTRACT

Nanocomposites comprising plasmon active metal nanostructures and semiconductors have been used to control the charge states in the metal to support catalytic activity. In this context dichalcogenides when combined with metal oxides offer the potential to control charge states in plasmonic nanomaterials. Using a model plasmonic mediated oxidation reaction p-amino thiophenol ↔ p-nitrophenol, we show that through the introduction of transition metal dichalcogenide nanomaterial, reaction outcomes can be influenced, achieved through controlling the occurrence of the reaction intermediate dimercaptoazobenzene by opening new electron transfer routes in a semiconductor-plasmonic system. This study demonstrates the ability to control plasmonic reactions by carefully controlling the choice of semiconductors.

4.
ACS Appl Mater Interfaces ; 14(10): 12504-12514, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35254049

ABSTRACT

Semiconducting materials are increasingly proposed as alternatives to noble metal nanomaterials to enhance Raman scattering. We demonstrate that bioinspired semiconducting diphenylalanine peptide nanotubes annealed through a reported structural transition can support Raman detection of 10-7 M concentrations for a range of molecules including mononucleotides. The enhancement is attributed to the introduction of electronic states below the conduction band that facilitate charge transfer to the analyte molecule. These results show that organic semiconductor-based materials can serve as platforms for enhanced Raman scattering for chemical sensing. As the sensor is metal-free, the enhancement is achieved without the introduction of electromagnetic surface-enhanced Raman spectroscopy.

5.
ACS Mater Au ; 2(4): 453-463, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-36855706

ABSTRACT

In order to meet environmental concerns, there is an increasing demand for biodegradable and sustainable materials in many areas, including photonics. Cellulose and its derivatives are potentially eco-friendly alternatives to conventional plastics, because of their abundance and lower environmental impact. Here, we report the fabrication of plasmonic structures by molding cellulose acetate into submicrometric periodic lattices, using soft lithography. The fabricated platforms can be used for the enhancement of Raman and fluorescence signals of a range of analytes including a model immunoassay utilizing a streptavidin-conjugated dye, which is characterized by a 23-fold enhancement in fluorescence signal intensity, which shows the potential of the platform to be further used for the assay-based development of diagnostic tools.

6.
J Phys Chem B ; 125(41): 11432-11443, 2021 10 21.
Article in English | MEDLINE | ID: mdl-34634911

ABSTRACT

Molecular dynamics simulations based on an atomistic empirical force field have been carried out to investigate structural, thermodynamic, and dynamical properties of adlayers made of porphyrin-type molecules physisorbed on surfaces of cellulose Iß nanocrystals. The results show that low-index surfaces provide a thermally stable, weakly perturbing support for the deposition of non-hydrogen-bonded organic molecules. At submonolayer coverage, the discoidal porphyrin molecules lay flat on the surface, forming compact 2D clusters with clear elements of ordering. The adlayer grows layer-by-layer for the smallest porphyrin species on compact cellulose surfaces, while forming 3D clusters on a first relatively ordered adlayer (Stranski-Krastanov growth) in all other cases. The adsorption energy exceeds ∼1 eV per molecule, underlying the thermal stability of the adsorbate. Entropy plays a non-negligible role, destabilizing to some extent the adlayer. The in-plane dynamics of the smallest porphyrin species, i.e., porphine, on compact surfaces shows signs of superlubricity, due to the low energy and momentum exchange between the flat admolecule and the equally flat cellulose surface.


Subject(s)
Nanoparticles , Porphyrins , Adsorption , Cellulose , Thermodynamics
7.
JACS Au ; 1(11): 1987-1995, 2021 Nov 22.
Article in English | MEDLINE | ID: mdl-35574042

ABSTRACT

Enhancement of fluorescence through the application of plasmonic metal nanostructures has gained substantial research attention due to the widespread use of fluorescence-based measurements and devices. Using a microfabricated plasmonic silver nanoparticle-organic semiconductor platform, we show experimentally the enhancement of fluorescence intensity achieved through electro-optical synergy. Fluorophores located sufficiently near silver nanoparticles are combined with diphenylalanine nanotubes (FFNTs) and subjected to a DC electric field. It is proposed that the enhancement of the fluorescence signal arises from the application of the electric field along the length of the FFNTs, which stimulates the pairing of low-energy electrons in the FFNTs with the silver nanoparticles, enabling charge transport across the metal-semiconductor template that enhances the electromagnetic field of the plasmonic nanoparticles. Many-body perturbation theory calculations indicate that, furthermore, the charging of silver may enhance its plasmonic performance intrinsically at particular wavelengths, through band-structure effects. These studies demonstrate for the first time that field-activated plasmonic hybrid platforms can improve fluorescence-based detection beyond using plasmonic nanoparticles alone. In order to widen the use of this hybrid platform, we have applied it to enhance fluorescence from bovine serum albumin and Pseudomonas fluorescens. Significant enhancement in fluorescence intensity was observed from both. The results obtained can provide a reference to be used in the development of biochemical sensors based on surface-enhanced fluorescence.

8.
ACS Appl Mater Interfaces ; 12(43): 48874-48881, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33054174

ABSTRACT

Piezoelectric quasi-1D peptide nanotubes and plasmonic metal nanoparticles are combined to create a flexible and self-energized surface-enhanced Raman spectroscopy (SERS) substrate that strengthens SERS signal intensities by over an order of magnitude compared to an unflexed substrate. The platform is used to sense bovine serum albumin, lysozyme, glucose, and adenine. Finite-element electromagnetic modeling indicates that the signal enhancement results from piezoelectric-induced charge, which is mechanically activated via substrate bending. The results presented here open the possibility of using peptide nanotubes on conformal substrates for in situ SERS detection.


Subject(s)
Metal Nanoparticles/chemistry , Silver/chemistry , Particle Size , Phenylalanine/chemistry , Spectrum Analysis, Raman , Surface Properties
9.
Nat Commun ; 10(1): 2496, 2019 06 07.
Article in English | MEDLINE | ID: mdl-31175281

ABSTRACT

The development of new catalysts for oxidation reactions is of central importance for many industrial processes. Plasmonic catalysis involves photoexcitation of templates/chips to drive and enhance oxidation of target molecules. Raman-based sensing of target molecules can also be enhanced by these templates. This provides motivation for the rational design, characterization, and experimental demonstration of effective template nanostructures. In this paper, we report on a template comprising silver nanoparticles on aligned peptide nanotubes, contacted with a microfabricated chip in a dry environment. Efficient plasmonic catalysis for oxidation of molecules such as p-aminothiophenol results from facile trans-template charge transfer, activated and controlled by application of an electric field. Raman detection of biomolecules such as glucose and nucleobases are also dramatically enhanced by the template. A reduced quantum mechanical model is formulated, comprising a minimum description of key components. Calculated nanotube-metal-molecule charge transfer is used to understand the catalytic mechanism and shows this system is well-optimized.


Subject(s)
Catalysis , Metal Nanoparticles , Nanotubes, Peptide , Oxidation-Reduction , Electricity , Silver , Spectrum Analysis, Raman
10.
J Phys Chem Lett ; 10(8): 1878-1887, 2019 Apr 18.
Article in English | MEDLINE | ID: mdl-30925050

ABSTRACT

Semiconductor-graphene oxide-based surface-enhanced Raman spectroscopy substrates represent a new frontier in the field of surface-enhanced Raman spectroscopy (SERS). However, the application of graphene oxide has had limited success because of the poor Raman enhancement factors that are achievable in comparison to noble metals. In this work, we report chemical SERS enhancement enabled by the application of an electric field (10-25 V/mm) to aligned semiconducting peptide nanotube-graphene oxide composite structures during Raman measurements. The technique enables nanomolar detection sensitivity of glucose and nucleobases with up to 10-fold signal enhancement compared to metal-based substrates, which, to our knowledge, is higher than that previously reported for semiconductor-based SERS substrates. The increased Raman scattering is assigned to enhanced charge-transfer resonance enabled by work function lowering of the peptide nanotubes. These results provide insight into how semiconductor organic peptide nanotubes interact with graphene oxide, which may facilitate chemical biosensing, electronic devices, and energy-harvesting applications.


Subject(s)
Electricity , Graphite/chemistry , Nanotubes/chemistry , Peptides/chemistry , Spectrum Analysis, Raman/methods , Limit of Detection , Oxides/chemistry , Semiconductors
11.
ACS Appl Mater Interfaces ; 10(36): 30871-30878, 2018 Sep 12.
Article in English | MEDLINE | ID: mdl-30107124

ABSTRACT

Photoinduced enhanced Raman spectroscopy from a lithium niobate on insulator (LNOI)-silver nanoparticle template is demonstrated both by irradiating the template with 254 nm ultraviolet (UV) light before adding an analyte and before placing the substrate in the Raman system (substrate irradiation) and by irradiating the sample in the Raman system after adding the molecule (sample irradiation). The photoinduced enhancement enables up to an ∼sevenfold increase of the surface-enhanced Raman scattering signal strength of an analyte following substrate irradiation, whereas an ∼threefold enhancement above the surface-enhanced signal is obtained for sample irradiation. The photoinduced enhancement relaxes over the course of ∼10 h for a substrate irradiation duration of 150 min before returning to initial signal levels. The increase in Raman scattering intensity following UV irradiation is attributed to photoinduced charge transfer from the LNOI template to the analyte. New Raman bands are observed following UV irradiation, the appearance of which is suggestive of a photocatalytic reaction and highlight the potential of LNOI as a photoactive surface-enhanced Raman spectroscopy substrate.

12.
Appl Opt ; 57(22): E184-E189, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-30117870

ABSTRACT

Raman-spectroscopy-based methods, such as surface-enhanced Raman spectroscopy, are a well-evolved method to molecular fingerprint cell types. Here we demonstrate that surface-enhanced Raman spectroscopy can enable us to distinguish cell development stages of bone marrow hematopoietic stem cells towards red blood cells through the identification of specific surface-enhanced Raman spectroscopy biomarkers. The approach taken here is to allow cells to take in gold nanoparticles as Raman enhancement platforms for kinetic structural observations presented here through the view of the multidimensional parameter contribution, thereby enabling profiling of bone marrow hematopoietic stem cells acquired from proliferation (stage one), differentiation (stage two), and mature red blood cells (stage three).


Subject(s)
Cell Differentiation/physiology , Hematopoietic Stem Cells/cytology , Spectrum Analysis, Raman/methods , Cell Proliferation/physiology , Humans
13.
Sci Rep ; 8(1): 3880, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29497167

ABSTRACT

UV irradiation of aligned diphenylalanine peptide nanotubes (FF-PNTs) decorated with plasmonic silver nanoparticles (Ag NPs) enables photo-induced surface-enhanced Raman spectroscopy. UV-induced charge transfer facilitates a chemical enhancement that provides up to a 10-fold increase in surface-enhanced Raman intensity and allows the detection of a wide range of small molecules and low Raman cross-section molecules at concentrations as low as 10-13 M. The aligned FF-PNT/Ag NP template further prevents photodegradation of the molecules under investigation. Our results demonstrate that FF-PNTs can be used as an alternative material to semiconductors such as titanium dioxide for photo-induced surface-enhanced Raman spectroscopy applications.

14.
ACS Omega ; 3(3): 3165-3172, 2018 Mar 31.
Article in English | MEDLINE | ID: mdl-31458575

ABSTRACT

Single-molecule detection by surface-enhanced Raman scattering (SERS) is a powerful spectroscopic technique that is of interest for the sensor development field. An important aspect of optimizing the materials used in SERS-based sensors is the ability to have a high density of "hot spots" that enhance the SERS sensitivity to the single-molecule level. Photodeposition of gold (Au) nanoparticles through electric-field-directed self-assembly on a periodically proton-exchanged lithium niobate (PPELN) substrate provides conditions to form well-ordered microscale features consisting of closely packed Au nanoparticles. The resulting Au nanoparticle microstructure arrays (microarrays) are plasmon-active and support nonresonant single-molecule SERS at ultralow concentrations (<10-9-10-13 M) with excitation power densities <1 × 10-3 W cm-2 using wide-field imaging. The microarrays offer excellent SERS reproducibility, with an intensity variation of <7.5% across the substrate. As most biomarkers and molecules do not support resonance enhancement, this work demonstrates that PPELN is a suitable template for high-sensitivity, nonresonant sensing applications.

15.
Sci Technol Adv Mater ; 18(1): 172-179, 2017.
Article in English | MEDLINE | ID: mdl-28458741

ABSTRACT

Nanocomposites of diphenylalanine (FF) and carbon based materials provide an opportunity to overcome drawbacks associated with using FF micro- and nanostructures in nanobiotechnology applications, in particular their poor structural stability in liquid solutions. In this study, FF/graphene oxide (GO) composites were found to self-assemble into layered micro- and nanostructures, which exhibited improved thermal and aqueous stability. Dependent on the FF/GO ratio, the solubility of these structures was reduced to 35.65% after 30 min as compared to 92.4% for pure FF samples. Such functional nanocomposites may extend the use of FF structures to e.g. biosensing, electrochemical, electromechanical or electronic applications.

16.
J Biophotonics ; 8(1-2): 133-41, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24307406

ABSTRACT

Subcellular chemical heterogeneity plays a key role in cell organization and function. However the biomechanics underlying the structure-function relationship is governed by cell substructures which are poorly resolved using conventional chemical imaging methods. To date, advances in sub-diffraction limited infrared (IR) nanoscopy have permitted intracellular chemical mapping. In this work we report how image analysis applied to a combination of IR absorption nanoimaging and topographic data permits quantification of chemical complexity at the nanoscale, enabling the analysis of biochemical heterogeneity in mammalian cancer cells on the scale of subcellular features.


Subject(s)
Microscopy, Atomic Force/methods , Nanotechnology/methods , Neoplasms, Glandular and Epithelial/pathology , Spectrophotometry, Infrared/methods , Cell Line, Tumor , Humans
17.
Phys Chem Chem Phys ; 16(9): 4386-93, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24458009

ABSTRACT

We examine here a series of meso-phenyl porphyrin micro- and nanostructures. Optical absorption and emission spectroscopy imaging and atomic force microscopy are used to investigate the effect of peripheral groups in nano- and microstructures of 5,10,15,20-tetraphenylporphyrin (H2TPP) compared to three other phenylporphyrins, i.e. 5,10,15-triphenylporphyrin (H2-Tri-PP), 5,10-diphenylporphyrin (H25,10-BPP) and 5,15-diphenylporphyrin (H25,15-BPP) molecules. We show that nanospheres and nanorods are formed, the occurrence and properties of which are influenced by the number and position of the phenyl substituents.

18.
ACS Nano ; 6(8): 7373-80, 2012 Aug 28.
Article in English | MEDLINE | ID: mdl-22775541

ABSTRACT

Photodeposition of metallic nanostructures onto ferroelectric surfaces is typically based on patterning local surface reactivity via electric field poling. Here, we demonstrate metal deposition onto substrates which have been chemically patterned via proton exchange (i.e., without polarization reversal). The chemical patterning provides the ability to tailor the electrostatic fields near the surface of lithium niobate crystals, and these engineered fields are used to fabricate metallic nanostructures. The effect of the proton exchange process on the piezoelectric and electrostatic properties of the surface is characterized using voltage-modulated atomic force microscopy techniques, which, combined with modeling of the electric fields at the surface of the crystal, reveal that the deposition occurs preferentially along the boundary between ferroelectric and proton-exchanged regions. The metallic nanostructures have been further functionalized with a target probe molecule, 4-aminothiophenol, from which surface-enhanced Raman scattering (SERS) signal is detected, demonstrating the suitability of chemically patterned ferroelectrics as SERS-active templates.


Subject(s)
Crystallization/methods , Metal Nanoparticles/chemistry , Metal Nanoparticles/radiation effects , Surface Plasmon Resonance/methods , Electromagnetic Fields , Light , Macromolecular Substances/chemistry , Materials Testing , Metal Nanoparticles/ultrastructure , Molecular Conformation , Oxidation-Reduction , Surface Properties
19.
J Biophotonics ; 4(9): 588-91, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21374826

ABSTRACT

Sub diffraction limited infrared absorption imaging of hemoglobin was performed by coupling IR optics with an atomic force microscope. Comparisons between the AFM topography and IR absorption images of micron sized hemoglobin features are presented, along with nanoscale IR spectroscopic analysis of the metalloprotein.


Subject(s)
Hemoglobins/chemistry , Image Processing, Computer-Assisted/methods , Microscopy, Atomic Force/methods , Nanostructures/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Absorption , Hemoglobins/ultrastructure , Humans , Image Processing, Computer-Assisted/instrumentation , Lasers , Metalloproteins/chemistry , Metalloproteins/ultrastructure , Microscopy, Atomic Force/instrumentation , Nanostructures/ultrastructure , Reproducibility of Results , Sensitivity and Specificity , Spectroscopy, Fourier Transform Infrared/instrumentation
20.
Eur Biophys J ; 40(2): 217-9, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20949266

ABSTRACT

IR absorption spectroscopy of hemoglobin was performed using an infrared (IR) optical parametric oscillator laser and a commercial atomic force microscope (AFM) in a novel experimental arrangement based on the use of a bottom-up excitation alignment. This experimental approach enables detection of protein samples with resolution much higher than that of standard IR spectroscopy. Presented here are AFM-based IR absorption spectra of micron-sized hemoglobin features.


Subject(s)
Hemoglobins/analysis , Spectroscopy, Fourier Transform Infrared/methods , Hemoglobins/chemistry , Hemoglobins/metabolism , Lasers , Microscopy, Atomic Force/methods , Oscillometry , Reproducibility of Results , Sensitivity and Specificity , Spectroscopy, Fourier Transform Infrared/instrumentation , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...