Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 204(Pt 1): 246-254, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-28888206

ABSTRACT

The Chesapeake Bay (CB) basin is under a total maximum daily load (TMDL) mandate to reduce nitrogen, phosphorus, and sediment loads to the bay. Identifying shifts in the hydro-climatic regime may help explain observed trends in water quality. To identify potential shifts, hydrologic data (1927-2014) for 27 watersheds in the CB basin were analyzed to determine the relationships among long-term precipitation and stream discharge trends. The amount, frequency, and intensity of precipitation increased from 1910 to 1996 in the eastern U.S., with the observed increases greater in the northeastern U.S. than the southeastern U.S. The CB watershed spans the north-to-south gradient in precipitation increases, and hydrologic differences have been observed in watersheds north relative to watersheds south of the Pennsylvania-Maryland (PA-MD) border. Time series of monthly mean precipitation data specific to each of 27 watersheds were derived from the Precipitation-elevation Regression on Independent Slopes Model (PRISM) dataset, and monthly mean stream-discharge data were obtained from U.S. Geological Survey streamgage records. All annual precipitation trend slopes in the 18 watersheds north of the PA-MD border were greater than or equal to those of the nine south of that border. The magnitude of the trend slopes for 1927-2014 in both precipitation and discharge decreased in a north-to-south pattern. Distributions of the monthly precipitation and discharge datasets were assembled into percentiles for each year for each watershed. Multivariate correlation of precipitation and discharge within percentiles among the groups of northern and southern watersheds indicated only weak associations. Regional-scale average behaviors of trends in the distribution of precipitation and discharge annual percentiles differed between the northern and southern watersheds. In general, the linkage between precipitation and discharge was weak, with the linkage weaker in the northern watersheds compared to those in the south. On the basis of simple linear regression, 26 of the 27 watersheds are projected to have higher annual mean discharge in 2025, the target date for implementation of the TMDL for the CB basin.


Subject(s)
Bays , Nitrogen/analysis , Phosphorus/analysis , Geology , Maryland , Pennsylvania , Rivers , Southeastern United States , Water Quality
2.
Environ Sci Technol ; 48(17): 10071-8, 2014 Sep 02.
Article in English | MEDLINE | ID: mdl-25046800

ABSTRACT

Emissions of sulfur dioxide (SO2) to the atmosphere lead to atmospheric deposition of sulfate (SO4(2-)), which is the dominant strong acid anion causing acidification of surface waters and soils in the eastern United States. Since passage of the Clean Air Act and its Amendments, atmospheric deposition of SO2 in this region has declined by over 80%, but few corresponding decreases in streamwater SO4(2-) concentrations have been observed in unglaciated watersheds. We calculated SO4(2-) mass balances for 27 forested, unglaciated watersheds from Pennsylvania to Georgia, by using total atmospheric deposition (wet plus dry) as input. Many of these watersheds still retain SO4(2-), unlike their counterparts in the northeastern U.S. and southern Canada. Our analysis showed that many of these watersheds should convert from retaining to releasing SO4(2-) over the next two decades. The specific years when the watersheds crossover from retaining to releasing SO4(2-) correspond to a general geographical pattern of later net watershed release from north to south. The single most important variable that explained the crossover year was the runoff ratio, defined as the ratio of annual mean stream discharge to precipitation. Percent clay content and mean soil depth were secondary factors in predicting crossover year. The conversion of watersheds from net SO4(2-) retention to release anticipates more widespread reductions in streamwater SO4(2-) concentrations in this region.


Subject(s)
Atmosphere/chemistry , Sulfates/analysis , Sulfur/analysis , Water/chemistry , Geography , Linear Models , Rivers/chemistry , Southeastern United States
3.
J Environ Manage ; 111: 61-9, 2012 Nov 30.
Article in English | MEDLINE | ID: mdl-22820747

ABSTRACT

Global sea level is rising, and the relative rate in the Chesapeake Bay region of the East Coast of the United States is greater than the worldwide rate. Sea-level rise can cause saline water to migrate upstream in estuaries and rivers, threatening freshwater habitat and drinking-water supplies. The effects of future sea-level rise on two tributaries of Chesapeake Bay, the James and Chickahominy (CHK) Rivers, were evaluated in order to quantify the salinity change with respect to the magnitude of sea-level rise. Such changes are critical to: 1) local floral and faunal habitats that have limited tolerance ranges to salinity; and 2) a drinking-water supply for the City of Newport News, Virginia. By using the three-dimensional Hydrodynamic-Eutrophication Model (HEM-3D), sea-level rise scenarios of 30, 50, and 100 cm, based on the U.S. Climate Change Science Program for the mid-Atlantic region for the 21st century, were evaluated. The model results indicate that salinity increases in the entire river as sea level rises and that the salinity increase in a dry year is greater than that in a typical year. In the James River, the salinity increase in the middle-to-upper river (from 25 to 50 km upstream of the mouth) is larger than that in the lower and upper parts of the river. The maximum mean salinity increase would be 2 and 4 ppt for a sea-level rise of 50 and 100 cm, respectively. The upstream movement of the 10 ppt isohaline is much larger than the 5 and 20 ppt isohalines. The volume of water with salinity between 10 and 20 ppt would increase greatly if sea level rises 100 cm. In the CHK River, with a sea-level rise of 100 cm, the mean salinity at the drinking-water intake 34 km upstream of the mouth would be about 3 ppt in a typical year and greater than 5 ppt in a dry year, both far in excess of the U.S. Environmental Protection Agency's secondary standard for total dissolved solids for drinking water. At the drinking-water intake, the number of days of salinity greater than 0.1 ppt increases with increasing sea-level rise; during a dry year, 0.1 ppt would be exceeded for more than 100 days with as small a rise as 30 cm.


Subject(s)
Climate Change , Environmental Monitoring/methods , Rivers/chemistry , Salinity , Water Pollution, Chemical , Computer Simulation , Drinking Water , Models, Theoretical , Virginia , Water Movements
4.
Environ Monit Assess ; 155(1-4): 281-307, 2009 Aug.
Article in English | MEDLINE | ID: mdl-18677547

ABSTRACT

Vernal pools are sensitive environments that provide critical habitat for many species, including amphibians. These small water bodies are not always protected by pesticide label requirements for no-spray buffer zones, and the occurrence of pesticides in them is poorly documented. In this study, we investigated the occurrence of glyphosate, its primary degradation product aminomethylphosphonic acid, and additional pesticides in vernal pools and adjacent flowing waters. Most sampling sites were chosen to be in areas where glyphosate was being used either in production agriculture or for nonindigenous plant control. The four site locations were in otherwise protected areas (e.g., in a National Park). When possible, water samples were collected both before and after glyphosate application in 2005 and 2006. Twenty-eight pesticides or pesticide degradation products were detected in the study, and as many as 11 were identified in individual samples. Atrazine was detected most frequently and concentrations exceeded the freshwater aquatic life standard of 1.8 micrograms per liter (microg/l) in samples from Rands Ditch and Browns Ditch in DeSoto National Wildlife Refuge. Glyphosate was measured at the highest concentration (328 microg/l) in a sample from Riley Spring Pond in Rock Creek National Park. This concentration exceeded the freshwater aquatic life standard for glyphosate of 65 microg/l. Aminomethylphosphonic acid, triclopyr, and nicosulfuron also were detected at concentrations greater than 3.0 microg/l.


Subject(s)
Atrazine/analysis , Environmental Monitoring , Fresh Water/chemistry , Glycine/analogs & derivatives , Pesticides/analysis , Water Pollutants, Chemical/analysis , District of Columbia , Glycine/analysis , Maryland , United States , Wyoming , Glyphosate
5.
Environ Sci Technol ; 36(23): 4962-7, 2002 Dec 01.
Article in English | MEDLINE | ID: mdl-12523407

ABSTRACT

Mass balances of total arsenic and copper for a suburban lake in densely populated northern Virginia were calculated using date collected during 1998. Mass-balance terms were precipitation; stream inflow, including road runoff; stream outflow; and contributions from leaching of pressure-treated lumber. More mass of arsenic and copper was input to the lake than was output the 1998 lake-retention rates were 70% for arsenic and 20% for copper. The arsenic mass balance compared well with a calculated annual mass accumulation in the top 1 cm of the lake sediments; however, the calculated contribution of copper to the lake was insufficient to account for the amount of copper in this zone. Leaching experiments were conducted on lumber treated with chromated copper arsenate (CCA) to quantify approximate amounts of arsenic and copper contributed by this source. Sources to lake sediments included leaching of CCA-treated lumber (arsenic, 50%; copper, 4%), streamwater (arsenic, 50%; copper, 90%), and atmospheric deposition (arsenic, 1%; copper, 3%). Results of this study suggest that CCA-treated lumber and road runoff could be significant nonpoint sources of arsenic and copper, respectively, in suburban catchments.


Subject(s)
Arsenates/chemistry , Arsenic/analysis , Copper/analysis , Geologic Sediments/chemistry , Models, Theoretical , Water Pollutants/analysis , Environmental Monitoring , Virginia , Water Movements , Wood
SELECTION OF CITATIONS
SEARCH DETAIL
...