Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Cell Rep ; 43(3): 113882, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38457341

ABSTRACT

Numerous viruses alter host microtubule (MT) networks during infection, but how and why they induce these changes is unclear in many cases. We show that the vaccinia virus (VV)-encoded A51R protein is a MT-associated protein (MAP) that directly binds MTs and stabilizes them by both promoting their growth and preventing their depolymerization. Furthermore, we demonstrate that A51R-MT interactions are conserved across A51R proteins from multiple poxvirus genera, and highly conserved, positively charged residues in A51R proteins mediate these interactions. Strikingly, we find that viruses encoding MT interaction-deficient A51R proteins fail to suppress a reactive oxygen species (ROS)-dependent antiviral response in macrophages that leads to a block in virion morphogenesis. Moreover, A51R-MT interactions are required for VV virulence in mice. Collectively, our data show that poxviral MAP-MT interactions overcome a cell-intrinsic antiviral ROS response in macrophages that would otherwise block virus morphogenesis and replication in animals.


Subject(s)
Poxviridae , Virus Replication , Animals , Mice , Reactive Oxygen Species/metabolism , Poxviridae/genetics , Vaccinia virus/physiology , Viral Proteins/metabolism , Microtubules/metabolism , Antiviral Agents/metabolism
2.
Elife ; 122024 Jan 05.
Article in English | MEDLINE | ID: mdl-38180336

ABSTRACT

GTP-tubulin is preferentially incorporated at growing microtubule ends, but the biochemical mechanism by which the bound nucleotide regulates the strength of tubulin:tubulin interactions is debated. The 'self-acting' (cis) model posits that the nucleotide (GTP or GDP) bound to a particular tubulin dictates how strongly that tubulin interacts, whereas the 'interface-acting' (trans) model posits that the nucleotide at the interface of two tubulin dimers is the determinant. We identified a testable difference between these mechanisms using mixed nucleotide simulations of microtubule elongation: with a self-acting nucleotide, plus- and minus-end growth rates decreased in the same proportion to the amount of GDP-tubulin, whereas with interface-acting nucleotide, plus-end growth rates decreased disproportionately. We then experimentally measured plus- and minus-end elongation rates in mixed nucleotides and observed a disproportionate effect of GDP-tubulin on plus-end growth rates. Simulations of microtubule growth were consistent with GDP-tubulin binding at and 'poisoning' plus-ends but not at minus-ends. Quantitative agreement between simulations and experiments required nucleotide exchange at terminal plus-end subunits to mitigate the poisoning effect of GDP-tubulin there. Our results indicate that the interfacial nucleotide determines tubulin:tubulin interaction strength, thereby settling a longstanding debate over the effect of nucleotide state on microtubule dynamics.


Subject(s)
Microtubules , Tubulin , Polymerization , Nucleotides , Guanosine Triphosphate
3.
bioRxiv ; 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37205370

ABSTRACT

GTP-tubulin is preferentially incorporated at growing microtubule ends, but the biochemical mechanism by which the bound nucleotide regulates the strength of tubulin:tubulin interactions is debated. The 'self-acting' (cis) model posits that the nucleotide (GTP or GDP) bound to a particular tubulin dictates how strongly that tubulin interacts, whereas the 'interface-acting' (trans) model posits that the nucleotide at the interface of two tubulin dimers is the determinant. We identified a testable difference between these mechanisms using mixed nucleotide simulations of microtubule elongation: with self-acting nucleotide, plus- and minus-end growth rates decreased in the same proportion to the amount of GDP-tubulin, whereas with interface-acting nucleotide, plus-end growth rates decreased disproportionately. We then experimentally measured plus- and minus-end elongation rates in mixed nucleotides and observed a disproportionate effect of GDP-tubulin on plus-end growth rates. Simulations of microtubule growth were consistent with GDP-tubulin binding at and 'poisoning' plus-ends but not at minus-ends. Quantitative agreement between simulations and experiments required nucleotide exchange at terminal plus-end subunits to mitigate the poisoning effect of GDP-tubulin there. Our results indicate that the interfacial nucleotide determines tubulin:tubulin interaction strength, thereby settling a longstanding debate over the effect of nucleotide state on microtubule dynamics.

4.
Elife ; 112022 12 29.
Article in English | MEDLINE | ID: mdl-36580070

ABSTRACT

The disassembly of microtubules can generate force and drive intracellular motility. During mitosis, for example, chromosomes remain persistently attached via kinetochores to the tips of disassembling microtubules, which pull the sister chromatids apart. According to the conformational wave hypothesis, such force generation requires that protofilaments curl outward from the disassembling tips to exert pulling force directly on kinetochores. Rigorously testing this idea will require modifying the mechanical and energetic properties of curling protofilaments, but no way to do so has yet been described. Here, by direct measurement of working strokes generated in vitro by curling protofilaments, we show that their mechanical energy output can be increased by adding magnesium, and that yeast microtubules generate larger and more energetic working strokes than bovine microtubules. Both the magnesium and species-dependent increases in work output can be explained by lengthening the protofilament curls, without any change in their bending stiffness or intrinsic curvature. These observations demonstrate how work output from curling protofilaments can be tuned and suggest evolutionary conservation of the amount of curvature strain energy stored in the microtubule lattice.


Dividing cells duplicate their genetic information to create identical pairs of chromosomes, which then need to be equally distributed to the two future daughter cells. In preparation, each chromosome in a pair is pulled towards its final location by hollow tubes of proteins known as microtubules. To create this tugging force, the microtubule acts like a winch: the extremity attached to the chromosome gradually shortens by losing its building blocks. However, it is not clear how the microtubule can keep its grip on the chromosome while also 'falling apart' in this way. A possible explanation could stem from the way that microtubules are built, and from how they fall apart. Each tube is composed of rows of building blocks, called 'protofilaments'. As the microtubule shortens, the protofilaments first curl outwards before crumbling apart; this creates a curling action that could 'hook' the chromosome and pull on it as the microtubule shortens. This theory remains difficult to test however, in part because scientists lack ways to alter the properties of curling protofilaments in order to dissect how they work. Murray et al. aimed to fill that gap by using a technique they have previously developed, and which allows them to capture how much force curling protofilaments can apply on their environment. This approach uses an instrument known as laser tweezers to measure the pressure that microtubules exert on attached beads. With this assay, Murray et al. were able to investigate whether microtubule 'strength' is linked to protofilament length, a property that varies between species and in response to magnesium. The experiments revealed that adding magnesium not only lengthens protofilament curls but also increases the work generated from curling. In addition, they showed that yeast protofilaments create longer curls with more force compared to bovine microtubules. Together, these findings demonstrate that it is possible to fine-tune the force exerted by protofilaments on their environment by controlling their length. This knowledge could be helpful to scientists investigating the role of microtubules in cell division. Certain cancer drugs already target microtubules in order to stop rogue cells from multiplying. However, serious side-effects often emerge because these compounds also interfere with microtubule-based processes essential for healthy cells. By better understanding how protofilaments 'pull' on chromosomes, it may become possible to design targeted approaches to stop cell division but preserve the other fundamental roles that microtubules play in the body.


Subject(s)
Magnesium , Tubulin , Animals , Cattle , Tubulin/chemistry , Microtubules/chemistry , Cytoskeleton , Kinetochores
5.
Methods Mol Biol ; 2478: 653-676, 2022.
Article in English | MEDLINE | ID: mdl-36063337

ABSTRACT

Optical traps have enabled foundational studies of how mechanoenzymes such as kinesins and dynein motors walk along microtubules, how myosins move along F-actin, and how nucleic acid enzymes move along DNA or RNA. Often the filamentous substrates serve merely as passive tracks for mechanoenzymes but microtubules and F-actin are themselves dynamic protein polymers, capable of generating movement and force independently of conventional motors. Microtubule-driven forces are particularly important during mitosis, when they align duplicated chromosomes at the metaphase plate and then pull them apart during anaphase. These vital movements depend on specialized protein assemblies called kinetochores that couple the chromosomes to the tips of dynamic microtubule filaments, thereby allowing filament shortening to produce pulling forces. Although great strides have been made toward understanding the structures and functions of many kinetochore subcomplexes, the biophysical basis for their coupling to microtubule tips remains unclear. During tip disassembly, strain energy is released when straight protofilaments in the microtubule lattice curl outward, creating a conformational wave that propagates down the microtubule. A popular viewpoint is that the protofilaments as they curl outward hook elements of the kinetochore and tug on them, transferring some of their curvature strain energy to the kinetochore. As a first step toward testing this idea, we recently developed a laser trap assay to directly measure the working strokes generated by curling protofilaments. Our "wave" assay is based on an earlier pioneering study, with improvements that allow measurement of curl-driven movements as functions of force and quantification of their conformational strain energy. In this chapter, we provide a detailed protocol for our assay and describe briefly our instrument setup and data analysis methods.


Subject(s)
Actins , Stroke , Actins/metabolism , Cytoskeleton , Humans , Kinetochores , Microtubules/metabolism , Spindle Apparatus/metabolism , Stroke/metabolism
6.
Elife ; 112022 04 14.
Article in English | MEDLINE | ID: mdl-35420545

ABSTRACT

Microtubule polymerization dynamics result from the biochemical interactions of αß-tubulin with the polymer end, but a quantitative understanding has been challenging to establish. We used interference reflection microscopy to make improved measurements of microtubule growth rates and growth fluctuations in the presence and absence of GTP hydrolysis. In the absence of GTP hydrolysis, microtubules grew steadily with very low fluctuations. These data were best described by a computational model implementing slow assembly kinetics, such that the rate of microtubule elongation is primarily limited by the rate of αß-tubulin associations. With GTPase present, microtubules displayed substantially larger growth fluctuations than expected based on the no GTPase measurements. Our modeling showed that these larger fluctuations occurred because exposure of GDP-tubulin on the microtubule end transiently 'poisoned' growth, yielding a wider range of growth rates compared to GTP only conditions. Our experiments and modeling point to slow association kinetics (strong longitudinal interactions), such that drugs and regulatory proteins that alter microtubule dynamics could do so by modulating either the association or dissociation rate of tubulin from the microtubule tip. By causing slower growth, exposure of GDP-tubulin at the growing microtubule end may be an important early event determining catastrophe.


Subject(s)
Microtubules , Tubulin , Guanosine Diphosphate/metabolism , Guanosine Triphosphate/metabolism , Kinetics , Microtubules/metabolism , Tubulin/metabolism
7.
Curr Biol ; 32(6): 1247-1261.e6, 2022 03 28.
Article in English | MEDLINE | ID: mdl-35139359

ABSTRACT

Naegleria gruberi is a unicellular eukaryote whose evolutionary distance from animals and fungi has made it useful for developing hypotheses about the last common eukaryotic ancestor. Naegleria amoebae lack a cytoplasmic microtubule cytoskeleton and assemble microtubules only during mitosis and thus represent a unique system for studying the evolution and functional specificity of mitotic tubulins and the spindles they assemble. Previous studies show that Naegleria amoebae express a divergent α-tubulin during mitosis, and we now show that Naegleria amoebae express a second mitotic α- and two mitotic ß-tubulins. The mitotic tubulins are evolutionarily divergent relative to typical α- and ß-tubulins and contain residues that suggest distinct microtubule properties. These distinct residues are conserved in mitotic tubulin homologs of the "brain-eating amoeba" Naegleria fowleri, making them potential drug targets. Using quantitative light microscopy, we find that Naegleria's mitotic spindle is a distinctive barrel-like structure built from a ring of microtubule bundles. Similar to those of other species, Naegleria's spindle is twisted, and its length increases during mitosis, suggesting that these aspects of mitosis are ancestral features. Because bundle numbers change during metaphase, we hypothesize that the initial bundles represent kinetochore fibers and secondary bundles function as bridging fibers.


Subject(s)
Microtubules , Naegleria , Spindle Apparatus , Tubulin , Eukaryota , Microtubules/chemistry , Microtubules/genetics , Microtubules/physiology , Mitosis , Naegleria/cytology , Naegleria/genetics , Spindle Apparatus/chemistry , Spindle Apparatus/genetics , Tubulin/genetics
8.
J Cell Biol ; 220(5)2021 05 03.
Article in English | MEDLINE | ID: mdl-33734292

ABSTRACT

Microtubules are dynamic polymers that play fundamental roles in all eukaryotes. Despite their importance, how new microtubules form is poorly understood. Textbooks have focused on variations of a nucleation-elongation mechanism in which monomers rapidly equilibrate with an unstable oligomer (nucleus) that limits the rate of polymer formation; once formed, the polymer then elongates efficiently from this nucleus by monomer addition. Such models faithfully describe actin assembly, but they fail to account for how more complex polymers like hollow microtubules assemble. Here, we articulate a new model for microtubule formation that has three key features: (1) microtubules initiate via rectangular, sheet-like structures that grow faster the larger they become; (2) the dominant pathway proceeds via accretion, the stepwise addition of longitudinal or lateral layers; and (3) a "straightening penalty" to account for the energetic cost of tubulin's curved-to-straight conformational transition. This model can quantitatively fit experimental assembly data, providing new insights into biochemical determinants and assembly pathways for microtubule nucleation.


Subject(s)
Cell Nucleus/metabolism , Microtubules/metabolism , Tubulin/metabolism , Animals , Eukaryota/metabolism , Humans , Polymers/metabolism , Signal Transduction/physiology
9.
J Med Chem ; 63(22): 14054-14066, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33180487

ABSTRACT

A phenotypic high-throughput screen identified a benzamide small molecule with activity against small cell lung cancer cells. A "clickable" benzamide probe was designed that irreversibly bound a single 50 kDa cellular protein, identified by mass spectrometry as ß-tubulin. Moreover, the anti-cancer potency of a series of benzamide analogs strongly correlated with probe competition, indicating that ß-tubulin was the functional target. Additional evidence suggested that benzamides covalently modified Cys239 within the colchicine binding site. Consistent with this mechanism, benzamides impaired growth of microtubules formed with ß-tubulin harboring Cys239, but not ß3 tubulin encoding Ser239. We therefore designed an aldehyde-containing analog capable of trapping Ser239 in ß3 tubulin, presumably as a hemiacetal. Using a forward genetics strategy, we identified benzamide-resistant cell lines harboring a Thr238Ala mutation in ß-tubulin sufficient to induce compound resistance. The disclosed chemical probes are useful to identify other colchicine site binders, a frequent target of structurally diverse small molecules.


Subject(s)
Antineoplastic Agents/pharmacology , Benzamides/chemistry , Colchicine/metabolism , Microtubules/drug effects , Small Cell Lung Carcinoma/drug therapy , Tubulin Modulators/pharmacology , Tubulin/chemistry , Antineoplastic Agents/chemistry , Binding Sites , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Microtubules/metabolism , Protein Conformation , Small Cell Lung Carcinoma/pathology , Structure-Activity Relationship , Tubulin/genetics , Tubulin/metabolism , Tubulin Modulators/chemistry
10.
Elife ; 92020 08 10.
Article in English | MEDLINE | ID: mdl-32773040

ABSTRACT

The dynamic tyrosination-detyrosination cycle of α-tubulin regulates microtubule functions. Perturbation of this cycle impairs mitosis, neural physiology, and cardiomyocyte contraction. The carboxypeptidases vasohibins 1 and 2 (VASH1 and VASH2), in complex with the small vasohibin-binding protein (SVBP), mediate α-tubulin detyrosination. These enzymes detyrosinate microtubules more efficiently than soluble αß-tubulin heterodimers. The structural basis for this substrate preference is not understood. Using cryo-electron microscopy (cryo-EM), we have determined the structure of human VASH1-SVBP bound to microtubules. The acidic C-terminal tail of α-tubulin binds to a positively charged groove near the active site of VASH1. VASH1 forms multiple additional contacts with the globular domain of α-tubulin, including contacts with a second α-tubulin in an adjacent protofilament. Simultaneous engagement of two protofilaments by VASH1 can only occur within the microtubule lattice, but not with free αß heterodimers. These lattice-specific interactions enable preferential detyrosination of microtubules by VASH1.


Subject(s)
Carrier Proteins/chemistry , Carrier Proteins/ultrastructure , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/ultrastructure , Microtubules/ultrastructure , Tubulin/chemistry , Cryoelectron Microscopy , Crystallography, X-Ray , HeLa Cells , Humans , Protein Conformation , Tyrosine/chemistry
11.
Dev Cell ; 53(5): 495-497, 2020 06 08.
Article in English | MEDLINE | ID: mdl-32516593

ABSTRACT

The γ-tubulin ring complex (γTuRC) is a microtubule nucleator that controls when and where new microtubules form. In this issue of Developmental Cell, Consolati et al. provide much-needed insight into the mechanism of γTuRC-mediated nucleation by determining the structure of human γTuRC and performing quantitative measurements of its activity.


Subject(s)
Cryoelectron Microscopy , Tubulin , Humans , Microtubule-Organizing Center , Microtubules
12.
J Cell Sci ; 133(8)2020 04 24.
Article in English | MEDLINE | ID: mdl-32332092

ABSTRACT

CLIP-associating proteins (CLASPs) form an evolutionarily conserved family of regulatory factors that control microtubule dynamics and the organization of microtubule networks. The importance of CLASP activity has been appreciated for some time, but until recently our understanding of the underlying molecular mechanisms remained basic. Over the past few years, studies of, for example, migrating cells, neuronal development, and microtubule reorganization in plants, along with in vitro reconstitutions, have provided new insights into the cellular roles and molecular basis of CLASP activity. In this Cell Science at a Glance article and the accompanying poster, we will summarize some of these recent advances, emphasizing how they impact our current understanding of CLASP-mediated microtubule regulation.


Subject(s)
Microtubule-Associated Proteins , Microtubules , Microtubule-Associated Proteins/genetics , Tubulin
13.
Protein Sci ; 29(6): 1429-1439, 2020 06.
Article in English | MEDLINE | ID: mdl-32077153

ABSTRACT

αß-tubulin subunits cycle through a series of different conformations in the polymer lattice during microtubule growing and shrinking. How these allosteric responses to different tubulin:tubulin contacts contribute to microtubule dynamics, and whether the contributions are evolutionarily conserved, remains poorly understood. Here, we sought to determine whether the microtubule-stabilizing effects (slower shrinking) of the ß:T238A mutation we previously observed using yeast αß-tubulin would generalize to mammalian microtubules. Using recombinant human microtubules as a model, we found that the mutation caused slow microtubule shrinking, indicating that this effect of the mutation is indeed conserved. However, unlike in yeast, ß:T238A human microtubules grew faster than wild-type and the mutation did not appear to attenuate the conformational change associated with guanosine 5'-triphosphate (GTP) hydrolysis in the lattice. We conclude that the assembly-dependent conformational change in αß-tubulin can contribute to determine the rates of microtubule growing as well as shrinking. Our results also suggest that an allosteric perturbation like the ß:T238A mutation can alter the behavior of terminal subunits without accompanying changes in the conformation of fully surrounded subunits in the body of the microtubule.


Subject(s)
Microtubules/metabolism , Mutation , Tubulin/genetics , Allosteric Regulation , Humans , Microtubules/chemistry , Models, Molecular , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Tubulin/chemistry , Tubulin/metabolism
14.
PLoS Genet ; 15(10): e1008423, 2019 10.
Article in English | MEDLINE | ID: mdl-31584935

ABSTRACT

Accurate segregation of chromosomes to daughter cells is a critical aspect of cell division. It requires the kinetochores on duplicated chromosomes to biorient, attaching to microtubules from opposite poles of the cell. Bioriented attachments come under tension, while incorrect attachments lack tension and must be released to allow proper attachments to form. A well-studied error correction pathway is mediated by the Aurora B kinase, which destabilizes low tension-bearing attachments. We recently discovered that in vitro, kinetochores display an additional intrinsic tension-sensing pathway that utilizes Stu2. The contribution of kinetochore-associated Stu2 to error correction in cells, however, was unknown. Here, we identify a Stu2 mutant that abolishes its kinetochore function and show that it causes biorientation defects in vivo. We also show that this Stu2-mediated pathway functions together with the Aurora B-mediated pathway. Altogether, our work indicates that cells employ multiple pathways to ensure biorientation and the accuracy of chromosome segregation.


Subject(s)
Aurora Kinases/metabolism , Chromosome Segregation , Kinetochores/metabolism , Microtubule-Associated Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Aurora Kinases/genetics , Microtubule-Associated Proteins/genetics , Microtubules , Mutation , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics
15.
Mol Biol Cell ; 30(12): 1451-1462, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30943103

ABSTRACT

Microtubules are cylindrical polymers of αß-tubulin that play critical roles in fundamental processes such as chromosome segregation and vesicular transport. Microtubules display dynamic instability, switching stochastically between growth and rapid shrinking as a consequence of GTPase activity in the lattice. The molecular mechanisms behind microtubule catastrophe, the switch from growth to rapid shrinking, remain poorly defined. Indeed, two-state stochastic models that seek to describe microtubule dynamics purely in terms of the biochemical properties of GTP- and GDP-bound αß-tubulin predict the concentration dependence of microtubule catastrophe incorrectly. Recent studies provide evidence for three distinct conformations of αß-tubulin in the lattice that likely correspond to GTP, GDP.Pi, and GDP. The incommensurate lattices observed for these different conformations raise the possibility that in a mixed nucleotide state lattice, neighboring tubulin dimers might modulate each other's conformations and hence each other's biochemistry. We explored whether incorporating a GDP.Pi state or the likely effects of conformational accommodation can improve predictions of catastrophe. Adding a GDP.Pi intermediate did not improve the model. In contrast, adding neighbor-dependent modulation of tubulin biochemistry improved predictions of catastrophe. Because this conformational accommodation should propagate beyond nearest-neighbor contacts, our modeling suggests that long-range, through-lattice effects are important determinants of microtubule catastrophe.


Subject(s)
Microtubules/metabolism , Computer Simulation , GTP Phosphohydrolases/metabolism , Guanosine Diphosphate/metabolism , Models, Biological , Tubulin/metabolism
16.
Proc Natl Acad Sci U S A ; 116(15): 7314-7322, 2019 04 09.
Article in English | MEDLINE | ID: mdl-30804205

ABSTRACT

The biochemical basis of microtubule growth has remained elusive for over 30 years despite being fundamental for both cell division and associated chemotherapy strategies. Here, we combine interferometric scattering microscopy with recombinant tubulin to monitor individual tubulins binding to and dissociating from growing microtubule tips. We make direct, single-molecule measurements of tubulin association and dissociation rates. We detect two populations of transient dwell times and determine via binding-interface mutants that they are distinguished by the formation of one interprotofilament bond. Applying a computational model, we find that slow association kinetics with strong interactions along protofilaments best recapitulate our data and, furthermore, predicts plus-end tapering. Overall, we provide the most direct and complete experimental quantification of how microtubules grow to date.


Subject(s)
Microtubules/chemistry , Protein Multimerization , Tubulin/chemistry , Humans , Kinetics , Microtubules/metabolism , Tubulin/metabolism
17.
Int J Surg Pathol ; 27(1): 77-83, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30019982

ABSTRACT

Primary visceral myopathy caused by a pathogenic mutation in the gene encoding the enteric smooth muscle actin gamma 2 ( ACTG2) affects gastrointestinal and genitourinary tracts and often presents as chronic intestinal pseudoobstruction. We present a case of pediatric onset chronic intestinal pseudoobstruction associated with a novel missense ACTG2 mutation c.439G>T/p.G147C. In addition to the known disease manifestations of feeding intolerance and intestinal malrotation, our patient had a late-onset hypertrophic pyloric stenosis and a late-onset choledochal cyst, the former of which has not previously been described in patients with ACTG2-associated visceral myopathy.


Subject(s)
Actins/genetics , Choledochal Cyst/genetics , Intestinal Pseudo-Obstruction/genetics , Pyloric Stenosis, Hypertrophic/genetics , Child , Humans , Intestinal Pseudo-Obstruction/complications , Intestines/abnormalities , Male , Mutation, Missense
18.
J Cell Biol ; 217(12): 4298-4313, 2018 12 03.
Article in English | MEDLINE | ID: mdl-30217954

ABSTRACT

Cilia, essential motile and sensory organelles, have several compartments: the basal body, transition zone, and the middle and distal axoneme segments. The distal segment accommodates key functions, including cilium assembly and sensory activities. While the middle segment contains doublet microtubules (incomplete B-tubules fused to complete A-tubules), the distal segment contains only A-tubule extensions, and its existence requires coordination of microtubule length at the nanometer scale. We show that three conserved proteins, two of which are mutated in the ciliopathy Joubert syndrome, determine the geometry of the distal segment, by controlling the positions of specific microtubule ends. FAP256/CEP104 promotes A-tubule elongation. CHE-12/Crescerin and ARMC9 act as positive and negative regulators of B-tubule length, respectively. We show that defects in the distal segment dimensions are associated with motile and sensory deficiencies of cilia. Our observations suggest that abnormalities in distal segment organization cause a subset of Joubert syndrome cases.


Subject(s)
Armadillo Domain Proteins/metabolism , Cell Cycle Proteins/metabolism , Cilia/metabolism , Microtubules/metabolism , Protozoan Proteins/metabolism , Tetrahymena thermophila/metabolism , Abnormalities, Multiple/genetics , Abnormalities, Multiple/metabolism , Armadillo Domain Proteins/genetics , Cell Cycle Proteins/genetics , Cerebellum/abnormalities , Cerebellum/metabolism , Cilia/genetics , Eye Abnormalities/genetics , Eye Abnormalities/metabolism , Humans , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/metabolism , Microtubules/genetics , Protozoan Proteins/genetics , Retina/abnormalities , Retina/metabolism , Tetrahymena thermophila/genetics
19.
J Cell Biol ; 217(8): 2609-2611, 2018 08 06.
Article in English | MEDLINE | ID: mdl-30006463

ABSTRACT

What does the end of a growing microtubule look like? In this issue, McIntosh et al. (2018. J. Cell Biol. https://doi.org/10.1083/jcb.201802138) use electron tomography to provide state-of-the-art three-dimensional images of microtubule ends in cells and in vitro, yielding an unexpected answer to this fundamental question.


Subject(s)
Microtubules , Tubulin , Cytoskeleton , Guanosine Triphosphate
20.
Mol Biol Cell ; 29(11): 1359-1375, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29851564

ABSTRACT

Microtubules are heavily regulated dynamic polymers of αß-tubulin that are required for proper chromosome segregation and organization of the cytoplasm. Polymerases in the XMAP215 family use arrayed TOG domains to promote faster microtubule elongation. Regulatory factors in the cytoplasmic linker associated protein (CLASP) family that reduce catastrophe and/or increase rescue also contain arrayed TOGs, but how CLASP TOGs contribute to activity is poorly understood. Here, using Saccharomyces cerevisiae Stu1 as a model CLASP, we report structural, biochemical, and reconstitution studies that clarify functional properties of CLASP TOGs. The two TOGs in Stu1 have very different tubulin-binding properties: TOG2 binds to both unpolymerized and polymerized tubulin, and TOG1 binds very weakly to either. The structure of Stu1-TOG2 reveals a CLASP-specific residue that likely confers distinctive tubulin-binding properties. The isolated TOG2 domain strongly suppresses microtubule catastrophe and increases microtubule rescue in vitro, contradicting the expectation that regulatory activity requires an array of TOGs. Single point mutations on the tubulin-binding surface of TOG2 ablate its anti-catastrophe and rescue activity in vitro, and Stu1 function in cells. Revealing that an isolated CLASP TOG can regulate polymerization dynamics without being part of an array provides insight into the mechanism of CLASPs and diversifies the understanding of TOG function.


Subject(s)
Microtubule-Associated Proteins/chemistry , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acid Sequence , Models, Molecular , Mutation/genetics , Polymerization , Protein Binding , Protein Domains , Structure-Activity Relationship , Tubulin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...