Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Neurobiol ; 61(7): 4589-4601, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38105410

ABSTRACT

Both neurofibrillary tangles and senile plaques are associated with inflammation in Alzheimer's disease (AD). Their relative degree of induced neuroinflammation, however, is not well established. Mouse models of AD that expressed either human Aß42 (n = 7) or human hyperphosphorylated tau protein alone (n = 3), wild type (n = 10), and human AD samples (n = 29 with 18 controls) were studied. The benefit of using mouse models that possess only human tau or amyloid-b is that it allows for the individual evaluation of how each protein affects neuroinflammation, something not possible in human tissue. Three indicators of neuroinflammation were examined: TLRs/RIG1 expression, the density of astrocytes and microglial cells, and well-established mediators of neuroinflammation (IL6, TNFα, IL1ß, and CXCL10). There was a statistically significant increase in neuroinflammation with all three variables in the mouse models with human tau only as compared to human Aß42 only or wild-type mice (each at p < 0.0001). Only the Aß42 5xFAD mice (n = 4) showed statistically higher neuroinflammation versus wild type (p = 0.0030). The human AD tissues were segregated into Aß42 only or hyperphosphorylated tau protein with Aß42. The latter areas showed increased neuroinflammation with each of the three variables compared to the areas with only Aß42. Of the TLRs and RIG-1, TLR8 was significantly elevated in both the mouse model and human AD and only in areas with the abnormal tau protein. It is concluded that although Aß42 and hyperphosphorylated tau protein can each induce inflammation, the latter protein is associated with a much stronger neuroinflammatory response vis-a-vis a significantly greater activated microglial response.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Mice, Transgenic , Neuroinflammatory Diseases , tau Proteins , tau Proteins/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Humans , Amyloid beta-Peptides/metabolism , Phosphorylation , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Female , Male , Peptide Fragments/metabolism , Mice , Inflammation/pathology , Inflammation/metabolism , Aged , Microglia/metabolism , Microglia/pathology , Disease Models, Animal , Aged, 80 and over , Astrocytes/metabolism , Astrocytes/pathology
2.
Ann Diagn Pathol ; 63: 152102, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36634551

ABSTRACT

The toll like receptors (TLRs) and RIG-1 are proteins involved in the initial reaction of the innate immune system to infectious diseases and, thus, can provide much information to the surgical pathologist in terms of the molecular dynamics of the infection. The TLRs (TLR1, 2, 3, 4, 7, 8) and RIG-1 distribution as determined by immunohistochemistry was examined in the following diseases: human papillomavirus (n = 30 including 15 squamous intraepithelial lesions (SIL), 5 cancers, and 10 controls); molluscum contagiosum (n = 8 including 4 controls), SARS-CoV2 (n = 52 including 20 mild, 5 fatal, and 27 controls) and reovirus infection as oncolytic therapy. Mild, regressing infection (molluscum contagiosum, mild SARS-CoV2 and low grade SIL) each showed the same pattern: marked up regulation of at least three of the TLRs/RIG-1 with decreased expression of none compared to the controls. Severe infection (fatal SARS-CoV2, and cervical cancer) each showed marked decrease expression in at least three of the TLRs/RIG-1. We recently documented an equivalent marked decrease expression of the TLRs/RIG-1 in the placenta in fatal in utero infections. The reoviral infected tissues showed an overall pattern of marked increase expression of TLRs/RIG-1, consistent with a strong anti-viral response. Thus, the in situ testing of infectious diseases by a panel of these early infectious disease recognition proteins may allow the surgical pathologist to predict the outcome of the disease which, in turn, may assist in the understanding of the role of the TLRs/RIG-1 in determining the fate of a given infectious process.


Subject(s)
Communicable Diseases , DEAD Box Protein 58 , Toll-Like Receptors , Female , Humans , Pregnancy , Communicable Diseases/genetics , Communicable Diseases/pathology , COVID-19/genetics , COVID-19/pathology , Molluscum Contagiosum/genetics , Molluscum Contagiosum/pathology , RNA, Viral , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Toll-Like Receptors/metabolism , DEAD Box Protein 58/genetics , DEAD Box Protein 58/metabolism
3.
Ann Diagn Pathol ; 63: 152098, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36610314

ABSTRACT

Lichen sclerosus (LS) is a cutaneous disease of unknown etiology that often involves the vulva or foreskin but also can affect extragenital sites. Regardless of the anatomic site, the histomorphology and presumably pathogenesis are similar. Perhaps a clue to the pathophysiology of LS lies in its frequent association with morphea, specifically, when occurring in an extragenital context. In our experience a striking feature evident in established lichen sclerosis (LS) is one of superficial vascular drop out whereby residual vessels exhibited endothelial cell necrosis and microvascular basement membrane zone thickening, the latter reflective of antecedent episodes of microvascular injury. We sought to understand the pathophysiology that underlies the distinct vascular changes and in doing so, shed light on the pathogenesis of LS. We examined 44 cases of LS over a period of 2019 to 2021. We were able to obtain past medical histories in 34 of the 44 cases. Regarding pathological assessment, the predominant focus was on microvascular changes. We assessed the role of C5b-9 mediated vascular injury in the pathogenesis of the vasculopathy and enhanced type I interferon signaling in vessels given the morphologic semblance to the select interferonopathy syndromes, namely fibrosing dermatomyositis and Kohlmeier Degos disease. We examined the expression of CMV DNA and protein based on prior observations in an earlier study that isolated early protein expression in the microvasculature in the setting of LS and scleroderma. From a clinical perspective, the most striking association was an older age at the time of diagnosis (mean age of 62 years and median age of 61.5 years) and the presence of vascular comorbidities of diabetes, hypertension, and hyperlipidemia in almost 80% of cases. All cases showed significant microvascular changes in the superficial corium with the most frequent findings being those of significant basement membrane zone reduplication and vascular drop out. A number of cases showed prominent microvascular deposits of C5b-9 in the zone of hyalinizing fibrosis or subjacent to the discernible table of fibroplasia in the absence of enhanced type I interferon signaling. In no case were there viral cytopathic changes associated with CMV affecting the endothelium. The studies that encode CMV DNA or protein did not show a significant role for CMV reactivation in endothelium in the majority of the studied cases. It is concluded that the pathophysiology of LS includes a microvascular injury syndrome within the papillary dermis. The mechanism of endothelial cell injury is complement mediated at least in part and could reflect an adaptive immune response targeting endothelium indicative of classic complement pathway activation when coexisting with morphea or occurring in younger individuals. A non-immune based endothelial dysfunction and complement mediated injury unrelated to antibody driven classic complement pathway activation are more likely pathogenetically in the setting of certain diseases like diabetes mellitus and hypertension. Vascular drop out can be explained by the diminished endothelial progenitor pool needed to repopulate the damaged microvessels in certain settings like hypertension and diabetes.


Subject(s)
Cytomegalovirus Infections , Hypertension , Interferon Type I , Lichen Sclerosus et Atrophicus , Scleroderma, Localized , Adult , Humans , Middle Aged , Complement Membrane Attack Complex , Cytomegalovirus Infections/complications , Hypertension/complications , Lichen Sclerosus et Atrophicus/complications , Lichen Sclerosus et Atrophicus/pathology , Scleroderma, Localized/complications , Scleroderma, Localized/pathology
4.
Ann Diagn Pathol ; 62: 152080, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36535188

ABSTRACT

Novel biomarkers of in utero infections are needed to help guide early therapy. The toll like receptors (TLRs) and retinoic acid-inducible gene 1 (RIG-1) are proteins involved in the initial reaction of the innate immune system to infectious diseases. This study tested the hypothesis that a panel of TLRs and RIG-1 in the placenta could serve as an early biomarker of in utero infections. The TLRs and RIG-1 expression as determined by immunohistochemistry was scored in 10 control placentas (normal delivery or neonatal damage from known non-infectious cause), 8 placentas from documented in utero bacterial infection, and 7 placentas from documented in utero viral infections blinded to the clinical information. The non-infected placentas showed the following profile: no expression (TLR1, TLR3, TLR4, TLR7, TLR8), moderate expression (TLR2), and strong expression (RIG-1). The bacterial and viral infection cases shared the following profile: no to mild expression (TLR 2, TLR7, and RIG1), moderate expression (TLR4), and strong expression (TLR1, TLR3, and TLR8). The histologic findings in the chorionic villi were equivalent in the infected cases and controls, underscoring the need for molecular testing by the surgical pathologist when in utero infection is suspected. The results suggest that a panel of TLRs/RIG-1 analyses can allow the pathologist and/or clinician to diagnose in utero infections soon after birth. Also, treatments to antagonize the effects of TLR1, 3, and 8 may help abrogate in utero neonatal damage.


Subject(s)
Placenta , Pregnancy Complications, Infectious , Female , Humans , Infant, Newborn , Pregnancy/immunology , Placenta/immunology , Placenta/metabolism , Toll-Like Receptor 1/genetics , Toll-Like Receptor 1/metabolism , Toll-Like Receptor 3/genetics , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 4 , Toll-Like Receptor 7 , Toll-Like Receptor 8/genetics , Toll-Like Receptor 8/metabolism , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism , DEAD Box Protein 58/genetics , DEAD Box Protein 58/metabolism , Pregnancy Complications, Infectious/genetics , Pregnancy Complications, Infectious/metabolism
5.
CBE Life Sci Educ ; 20(2): es7, 2021 06.
Article in English | MEDLINE | ID: mdl-33944619

ABSTRACT

Asynchronous video-based educational resources allow for increased course material engagement. In today's climate, educators are encouraged to create videos for online instruction but are typically given limited production guidance. Few formal resources exist to guide educators for high-quality video production in a non-studio setting. This article is a how-to guide for producing videos using widely available primary resources through three steps: preproduction, production, and postproduction. During preproduction, educators consider style and project scope, including the "what, how, and why" of the content. For production, we have provided information on the set, light, sounds, and video equipment needed for optimizing video production in a non-studio setting. Finally, during postproduction, the educator considers how to combine and edit the video as well as organize content. Overall, this article is an approachable guide to help educators begin their low-budget video-production journeys.


Subject(s)
Students , Humans , Video Recording
SELECTION OF CITATIONS
SEARCH DETAIL
...