Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
Cell Rep ; 43(3): 113834, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38431842

ABSTRACT

Striatal dopamine axons co-release dopamine and gamma-aminobutyric acid (GABA), using GABA provided by uptake via GABA transporter-1 (GAT1). Functions of GABA co-release are poorly understood. We asked whether co-released GABA autoinhibits dopamine release via axonal GABA type A receptors (GABAARs), complementing established inhibition by dopamine acting at axonal D2 autoreceptors. We show that dopamine axons express α3-GABAAR subunits in mouse striatum. Enhanced dopamine release evoked by single-pulse optical stimulation in striatal slices with GABAAR antagonism confirms that an endogenous GABA tone limits dopamine release. Strikingly, an additional inhibitory component is seen when multiple pulses are used to mimic phasic axonal activity, revealing the role of GABAAR-mediated autoinhibition of dopamine release. This autoregulation is lost in conditional GAT1-knockout mice lacking GABA co-release. Given the faster kinetics of ionotropic GABAARs than G-protein-coupled D2 autoreceptors, our data reveal a mechanism whereby co-released GABA acts as a first responder to dampen phasic-to-tonic dopamine signaling.


Subject(s)
Autoreceptors , Dopamine , Mice , Animals , gamma-Aminobutyric Acid/pharmacology , Axons/metabolism , Corpus Striatum/metabolism , Receptors, GABA-A/metabolism , Mice, Knockout , Homeostasis
2.
Analyst ; 149(8): 2351-2362, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38375597

ABSTRACT

Monitoring the coordinated signaling of dopamine (DA) and serotonin (5-HT) is important for advancing our understanding of the brain. However, the co-detection and robust quantification of these signals at low concentrations is yet to be demonstrated. Here, we present the quantification of DA and 5-HT using nano-graphitic (NG) sensors together with fast-scan cyclic voltammetry (FSCV) employing an engineered N-shape potential waveform. Our method yields 6% error in quantifying DA and 5-HT analytes present in in vitro mixtures at concentrations below 100 nM. This advance is due to the electrochemical properties of NG sensors which, in combination with the engineered FSCV waveform, provided distinguishable cyclic voltammograms (CVs) for DA and 5-HT. We also demonstrate the generalizability of the prediction model across different NG sensors, which arises from the consistent voltammetric fingerprints produced by our NG sensors. Curiously, the proposed engineered waveform also improves the distinguishability of DA and 5-HT CVs obtained from traditional carbon fiber (CF) microelectrodes. Nevertheless, this improved distinguishability of CVs obtained from CF is inferior to that of NG sensors, arising from differences in the electrochemical properties of the sensor materials. Our findings demonstrate the potential of NG sensors and our proposed FSCV waveform for future brain studies.


Subject(s)
Dopamine , Graphite , Carbon , Serotonin , Carbon Fiber , Microelectrodes , Electrochemical Techniques/methods
3.
Biomolecules ; 13(3)2023 03 11.
Article in English | MEDLINE | ID: mdl-36979453

ABSTRACT

Insulin crosses the blood-brain barrier to enter the brain from the periphery. In the brain, insulin has well-established actions in the hypothalamus, as well as at the level of mesolimbic dopamine neurons in the midbrain. Notably, insulin also acts in the striatum, which shows abundant expression of insulin receptors (InsRs) throughout. These receptors are found on interneurons and striatal projections neurons, as well as on glial cells and dopamine axons. A striking functional consequence of insulin elevation in the striatum is promoting an increase in stimulated dopamine release. This boosting of dopamine release involves InsRs on cholinergic interneurons, and requires activation of nicotinic acetylcholine receptors on dopamine axons. Opposing this dopamine-enhancing effect, insulin also increases dopamine uptake through the action of insulin at InsRs on dopamine axons. Insulin acts on other striatal cells as well, including striatal projection neurons and astrocytes that also influence dopaminergic transmission and striatal function. Linking these cellular findings to behavior, striatal insulin signaling is required for the development of flavor-nutrient learning, implicating insulin as a reward signal in the brain. In this review, we discuss these and other actions of insulin in the striatum, including how they are influenced by diet and other physiological states.


Subject(s)
Corpus Striatum , Insulin , Acetylcholine/metabolism , Cholinergic Agents/metabolism , Corpus Striatum/metabolism , Dopamine/metabolism , Insulin/metabolism , Receptor, Insulin/metabolism
5.
J Neurosci ; 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35906070

ABSTRACT

Dopamine (DA) is a critical regulator of striatal network activity and is essential for motor activation and reward-associated behaviors. Previous work has shown that DA is influenced by the reward value of food, as well as by hormonal factors implicated in the regulation of food intake and energy expenditure. Changes in striatal DA signaling also have been linked to aberrant eating patterns. Here we test the effect of leptin, an adipocyte-derived hormone involved in feeding and energy homeostasis regulation, on striatal DA release and uptake. Immunohistochemical evaluation identified leptin receptor expression throughout mouse striatum, including on striatal cholinergic interneurons and their extensive processes. Using fast-scan cyclic voltammetry, we found that leptin causes a concentration-dependent increase in evoked extracellular DA concentration ([DA]o) in dorsal striatum and nucleus accumbens (NAc) core and shell in male mouse striatal slices, and also an increase in the rate of DA uptake. Further, we found that leptin increases cholinergic interneuron excitability, and that the enhancing effect of leptin on evoked [DA]o is lost when nicotinic acetylcholine (ACh) receptors are antagonized or when examined in striatal slices from mice lacking ACh synthesis. Evaluation of signaling pathways underlying leptin's action revealed a requirement for intracellular Ca2+, and the involvement of different downstream pathways in dorsal striatum and NAc core versus NAc shell. These results provide the first evidence for dynamic regulation of DA release and uptake by leptin within brain motor and reward pathways, and highlight the involvement of cholinergic interneurons in this process.SIGNIFICANCE STATEMENTGiven the importance of striatal dopamine in reward, motivation, motor behavior and food intake, identifying the actions of metabolic hormones on dopamine release in striatal subregions should provide new insight into factors that influence dopamine-dependent motivated behaviors. We find that one of these hormones, leptin, boosts striatal dopamine release through a process involving striatal cholinergic interneurons and nicotinic acetylcholine receptors. Moreover, we find that the intracellular cascades downstream from leptin receptor activation underlying enhanced dopamine release differ among striatal subregions. Thus, we not only show that leptin regulates dopamine release, but also identify characteristics of this process that could be harnessed to alter pathological eating behaviors.

6.
J Neurosci ; 42(23): 4725-4736, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35577554

ABSTRACT

Physical exercise improves motor performance in individuals with Parkinson's disease and elevates mood in those with depression. Although underlying factors have not been identified, clues arise from previous studies showing a link between cognitive benefits of exercise and increases in brain-derived neurotrophic factor (BDNF). Here, we investigated the influence of voluntary wheel-running exercise on BDNF levels in the striatum of young male wild-type (WT) mice, and on the striatal release of a key motor-system transmitter, dopamine (DA). Mice were allowed unlimited access to a freely rotating wheel (runners) or a locked wheel (controls) for 30 d. Electrically evoked DA release was quantified in ex vivo corticostriatal slices from these animals using fast-scan cyclic voltammetry. We found that exercise increased BDNF levels in dorsal striatum (dStr) and increased DA release in dStr and in nucleus accumbens core and shell. Increased DA release was independent of striatal acetylcholine (ACh), and persisted after a week of rest. We tested a role for BDNF in the influence of exercise on DA release using mice that were heterozygous for BDNF deletion (BDNF+/-). In contrast to WT mice, evoked DA release did not differ between BDNF+/- runners and controls. Complementary pharmacological studies using a tropomyosin receptor kinase B (TrkB) agonist in WT mouse slices showed that TrkB receptor activation also increased evoked DA release throughout striatum in an ACh-independent manner. Together, these data support a causal role for BDNF in exercise-enhanced striatal DA release and provide mechanistic insight into the beneficial effects of exercise in neuropsychiatric disorders, including Parkinson's, depression, and anxiety.SIGNIFICANCE STATEMENT Exercise has been shown to improve movement and cognition in humans and rodents. Here, we report that voluntary exercise for 30 d leads to an increase in evoked DA release throughout the striatum and an increase in BDNF in the dorsal (motor) striatum. The increase in DA release appears to require BDNF, indicated by the absence of DA release enhancement with running in BDNF+/- mice. Activation of BDNF receptors using a pharmacological agonist was also shown to boost DA release. Together, these data support a necessary and sufficient role for BDNF in exercise-enhanced DA release and provide mechanistic insight into the reported benefits of exercise in individuals with dopamine-linked neuropsychiatric disorders, including Parkinson's disease and depression.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Dopamine , Parkinson Disease , Acetylcholine/pharmacology , Animals , Brain-Derived Neurotrophic Factor/pharmacology , Corpus Striatum , Dopamine/physiology , Male , Mice , Mice, Inbred C57BL , Nucleus Accumbens
7.
J Neurosci ; 42(19): 3919-3930, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35361702

ABSTRACT

The molecular mechanisms underlying somatodendritic dopamine (DA) release remain unresolved, despite the passing of decades since its discovery. Our previous work showed robust release of somatodendritic DA in submillimolar extracellular Ca2+ concentration ([Ca2+]o). Here we tested the hypothesis that the high-affinity Ca2+ sensor synaptotagmin 7 (Syt7), is a key determinant of somatodendritic DA release and its Ca2+ dependence. Somatodendritic DA release from SNc DA neurons was assessed using whole-cell recording in midbrain slices from male and female mice to monitor evoked DA-dependent D2 receptor-mediated inhibitory currents (D2ICs). Single-cell application of an antibody to Syt7 (Syt7 Ab) decreased pulse train-evoked D2ICs, revealing a functional role for Syt7. The assessment of the Ca2+ dependence of pulse train-evoked D2ICs confirmed robust DA release in submillimolar [Ca2+]o in wild-type (WT) neurons, but loss of this sensitivity with intracellular Syt7 Ab or in Syt7 knock-out (KO) mice. In millimolar [Ca2+]o, pulse train-evoked D2ICs in Syt7 KOs showed a greater reduction in decreased [Ca2+]o than seen in WT mice; the effect on single pulse-evoked DA release, however, did not differ between genotypes. Single-cell application of a Syt1 Ab had no effect on train-evoked D2ICs in WT SNc DA neurons, but did cause a decrease in D2IC amplitude in Syt7 KOs, indicating a functional substitution of Syt1 for Syt7. In addition, Syt1 Ab decreased single pulse-evoked D2ICs in WT cells, indicating the involvement of Syt1 in tonic DA release. Thus, Syt7 and Syt1 play complementary roles in somatodendritic DA release from SNc DA neurons.SIGNIFICANCE STATEMENT The respective Ca2+ dependence of somatodendritic and axonal dopamine (DA) release differs, resulting in the persistence of somatodendritic DA release in submillimolar Ca2+ concentrations too low to support axonal release. We demonstrate that synaptotagmin7 (Syt7), a high-affinity Ca2+ sensor, underlies phasic somatodendritic DA release and its Ca2+ sensitivity in the substantia nigra pars compacta. In contrast, we found that synaptotagmin 1 (Syt1), the Ca2+ sensor underlying axonal DA release, plays a role in tonic, but not phasic, somatodendritic DA release in wild-type mice. However, Syt1 can facilitate phasic DA release after Syt7 deletion. Thus, we show that both Syt1 and Syt7 act as Ca2+ sensors subserving different aspects of somatodendritic DA release processes.


Subject(s)
Dopamine , Substantia Nigra , Synaptotagmin I , Synaptotagmins , Animals , Dendrites , Dopamine/pharmacology , Dopaminergic Neurons , Electric Stimulation , Female , Male , Mice , Synaptotagmin I/genetics , Synaptotagmins/genetics
8.
Cell Rep ; 35(1): 108951, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33826884

ABSTRACT

Somatodendritic dopamine (DA) release from midbrain DA neurons activates D2 autoreceptors on these cells to regulate their activity. However, the source of autoregulatory DA remains controversial. Here, we test the hypothesis that D2 autoreceptors on a given DA neuron in the substantia nigra pars compacta (SNc) are activated primarily by DA released from that same cell, rather than from its neighbors. Voltage-clamp recording allows monitoring of evoked D2-receptor-mediated inhibitory currents (D2ICs) in SNc DA neurons as an index of DA release. Single-cell application of antibodies to Na+ channels via the recording pipette decreases spontaneous activity of recorded neurons and attenuates evoked D2ICs; antibodies to SNAP-25, a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein, also decrease D2IC amplitude. Evoked D2ICs are nearly abolished by the light chain of botulinum neurotoxin A, which cleaves SNAP-25, whereas synaptically activated GABAB-receptor-mediated currents are unaffected. Thus, somatodendritic DA release in the SNc autoinhibits the neuron that releases it.


Subject(s)
Dendrites/metabolism , Dopamine/metabolism , Substantia Nigra/metabolism , Animals , Antibodies/metabolism , Electric Stimulation , Inhibitory Postsynaptic Potentials , Kinetics , Male , Mice, Inbred C57BL , Receptors, Dopamine D2/metabolism , Single-Cell Analysis , Synaptosomal-Associated Protein 25/metabolism , Voltage-Gated Sodium Channels/metabolism , gamma-Aminobutyric Acid/metabolism
9.
Mol Psychiatry ; 26(11): 6427-6450, 2021 11.
Article in English | MEDLINE | ID: mdl-33879865

ABSTRACT

Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) has been shown to activate the eIF2α kinase PERK to directly regulate translation initiation. Tight control of PERK-eIF2α signaling has been shown to be necessary for normal long-lasting synaptic plasticity and cognitive function, including memory. In contrast, chronic activation of PERK-eIF2α signaling has been shown to contribute to pathophysiology, including memory impairments, associated with multiple neurological diseases, making this pathway an attractive therapeutic target. Herein, using multiple genetic approaches we show that selective deletion of the PERK in mouse midbrain dopaminergic (DA) neurons results in multiple cognitive and motor phenotypes. Conditional expression of phospho-mutant eIF2α in DA neurons recapitulated the phenotypes caused by deletion of PERK, consistent with a causal role of decreased eIF2α phosphorylation for these phenotypes. In addition, deletion of PERK in DA neurons resulted in altered de novo translation, as well as changes in axonal DA release and uptake in the striatum that mirror the pattern of motor changes observed. Taken together, our findings show that proper regulation of PERK-eIF2α signaling in DA neurons is required for normal cognitive and motor function in a non-pathological state, and also provide new insight concerning the onset of neuropsychiatric disorders that accompany UPR failure.


Subject(s)
Dopaminergic Neurons , Eukaryotic Initiation Factor-2 , Animals , Cognition , Dopaminergic Neurons/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress , Eukaryotic Initiation Factor-2/genetics , Mice , Phosphorylation , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism
10.
Biochemistry ; 59(4): 425-435, 2020 02 04.
Article in English | MEDLINE | ID: mdl-31854188

ABSTRACT

Aggregations of ß-amyloid (Aß) and α-synuclein (αS) into oligomeric and fibrillar assemblies are the pathological hallmarks of Alzheimer's and Parkinson's diseases, respectively. Although Aß and αS affect different regions of the brain and are separated at the cellular level, there is evidence of their eventual interaction in the pathology of both disorders. Characterization of interactions of Aß and αS at various stages of their aggregation pathways could reveal mechanisms and therapeutic targets for the prevention and cure of these neurodegenerative diseases. In this study, we comprehensively examined the interactions and their molecular manifestations using an array of characterization tools. We show for the first time that αS monomers and oligomers, but not αS fibrils, inhibit Aß fibrillization while promoting oligomerization of Aß monomers and stabilizing preformed Aß oligomers via coassembly, as judged by Thioflavin T fluorescence, transmission electron microscopy, and SDS- and native-PAGE with fluorescently labeled peptides/proteins. In contrast, soluble Aß species, such as monomers and oligomers, aggregate into fibrils, when incubated alone under the otherwise same condition. Our study provides evidence that the interactions with αS soluble species, responsible for the effects, are mediated primarily by the C-terminus of Aß, when judged by competitive immunoassays using antibodies recognizing various fragments of Aß. We also show that the C-terminus of Aß is a primary site for its interaction with αS fibrils. Collectively, these data demonstrate aggregation state-specific interactions between αS and Aß and offer insight into a molecular basis of synergistic biological effects between the two polypeptides.


Subject(s)
Amyloid beta-Peptides/chemistry , Amyloid/chemistry , alpha-Synuclein/chemistry , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Benzothiazoles/chemistry , Brain/metabolism , Electrophoresis, Polyacrylamide Gel/methods , Humans , Microscopy, Atomic Force/methods , Microscopy, Electron, Transmission/methods , Neurodegenerative Diseases/metabolism , Parkinson Disease/metabolism , Peptide Fragments/chemistry , Protein Aggregation, Pathological/metabolism
11.
Neuroscience ; 422: 1-11, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31669362

ABSTRACT

Dystonia is a disabling neurological syndrome characterized by abnormal movements and postures that result from intermittent or sustained involuntary muscle contractions; mutations of DYT1/TOR1A are the most common cause of childhood-onset, generalized, inherited dystonia. Patient and mouse model data strongly support dysregulation of the nigrostriatal dopamine neurotransmission circuit in the presence of the DYT1-causing mutation. To determine striatal medium spiny neuron (MSN) cell-autonomous and non-cell autonomous effects relevant to dopamine transmission, we created a transgenic mouse in which expression of mutant torsinA in forebrain is restricted to MSNs. We assayed electrically evoked and cocaine-enhanced dopamine release and locomotor activity, dopamine uptake, gene expression of dopamine-associated neuropeptides and receptors, and response to the muscarinic cholinergic antagonist, trihexyphenidyl. We found that over-expression of mutant torsinA in MSNs produces complex cell-autonomous and non-cell autonomous alterations in nigrostriatal dopaminergic and intrastriatal cholinergic function, similar to that found in pan-cellular DYT1 mouse models. These data introduce targets for future studies to identify which are causative and which are compensatory in DYT1 dystonia, and thereby aid in defining appropriate therapies.


Subject(s)
Corpus Striatum/metabolism , Disease Models, Animal , Molecular Chaperones/biosynthesis , Molecular Chaperones/physiology , Motor Skills/physiology , Substantia Nigra/metabolism , Animals , Cocaine/pharmacology , Dopamine/metabolism , Dystonia/genetics , Dystonia/metabolism , Electric Stimulation , Female , Gene Expression/drug effects , Male , Mice , Mice, Transgenic , Molecular Chaperones/genetics , Mutation , Neural Pathways/metabolism , Neurons/metabolism , Trihexyphenidyl/antagonists & inhibitors , Trihexyphenidyl/pharmacology
12.
Nature ; 570(7759): 40-42, 2019 06.
Article in English | MEDLINE | ID: mdl-31160742

Subject(s)
Dopamine , Motivation , Learning
13.
Eur J Neurosci ; 49(6): 794-804, 2019 03.
Article in English | MEDLINE | ID: mdl-29791756

ABSTRACT

Diet influences dopamine transmission in motor- and reward-related basal ganglia circuitry. In part, this reflects diet-dependent regulation of circulating and brain insulin levels. Activation of striatal insulin receptors amplifies axonal dopamine release in brain slices, and regulates food preference in vivo. The effect of insulin on dopamine release is indirect, and requires striatal cholinergic interneurons that express insulin receptors. However, insulin also acts directly on dopamine axons to increase dopamine uptake by promoting dopamine transporter (DAT) surface expression, counteracting enhanced dopamine release. Here, we determined the functional consequences of acute insulin exposure and chronic diet-induced changes in insulin on DAT activity after evoked dopamine release in striatal slices from adult ad-libitum fed (AL) rats and mice, and food-restricted (FR) or high-fat/high-sugar obesogenic (OB) diet rats. Uptake kinetics were assessed by fitting evoked dopamine transients to the Michaelis-Menten equation and extracting Cpeak and Vmax . Insulin (30 nm) increased both parameters in the caudate putamen and nucleus accumbens core of AL rats in an insulin receptor- and PI3-kinase-dependent manner. A pure effect of insulin on uptake was unmasked using mice lacking striatal acetylcholine, in which increased Vmax caused a decrease in Cpeak . Diet also influenced Vmax , which was lower in FR vs. AL. The effects of insulin on Cpeak and Vmax were amplified by FR but blunted by OB, consistent with opposite consequences of these diets on insulin levels and insulin receptor sensitivity. Overall, these data reveal acute and chronic effects of insulin and diet on dopamine release and uptake that will influence brain reward pathways.


Subject(s)
Brain/metabolism , Diet, High-Fat , Dopamine/metabolism , Insulin/metabolism , Animals , Brain/drug effects , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Dopamine/pharmacology , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine Plasma Membrane Transport Proteins/pharmacology , Insulin/pharmacology , Interneurons/drug effects , Interneurons/metabolism , Male , Nucleus Accumbens/drug effects , Rats, Sprague-Dawley , Receptor, Insulin/drug effects , Receptor, Insulin/metabolism
14.
ACS Chem Neurosci ; 8(2): 310-319, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28177213

ABSTRACT

Fast-scan cyclic voltammetry (FCV) is an established method to monitor increases in extracellular dopamine (DA) concentration ([DA]o) in the striatum, which is densely innervated by DA axons. Ex vivo brain slice preparations provide an opportunity to identify endogenous modulators of DA release. For these experiments, local electrical stimulation is often used to elicit release of DA, as well as other transmitters, in the striatal microcircuitry; changes in evoked increases in [DA]o after application of a pharmacological agent (e.g., a receptor antagonist) indicate a regulatory role for the transmitter system interrogated. Optogenetic methods that allow specific stimulation of DA axons provide a complementary, bottom-up approach for elucidating factors that regulate DA release. To this end, we have characterized DA release evoked by local electrical and optical stimulation in striatal slices from mice that genetically express a variant of channelrhodopsin-2 (ChR2). Evoked increases in [DA]o in the dorsal and ventral striatum (dStr and vStr) were examined in a cross of a Cre-dependent ChR2 line ("Ai32" mice) with a DAT::Cre mouse line. In dStr, repeated optical pulse-train stimulation at the same recording site resulted in rundown of evoked [DA]o using heterozygous mice, which contrasted with the stability seen with electrical stimulation. Similar rundown was seen in the presence of a nicotinic acetylcholine receptor (nAChR) antagonist, implicating the absence of concurrent nAChR activation in DA release instability in slices. Rundown with optical stimulation in dStr could be circumvented by recording from a population of sites, each stimulated only once. Same-site rundown was less pronounced with single-pulse stimulation, and a stable baseline could be attained. In vStr, stable optically evoked increases in [DA]o at single sites could be achieved using heterozygous mice, although with relatively low peak [DA]o. Low release could be overcome by using mice with a second copy of the Ai32 allele, which doubled ChR2 expression. The characteristics reported here should help future practitioners decide which Ai32;DAT::Cre genotype and recording protocol is optimal for the striatal subregion to be examined.


Subject(s)
Corpus Striatum/metabolism , Dopamine Plasma Membrane Transport Proteins/genetics , Dopamine/metabolism , Electric Stimulation/methods , Optogenetics , Acetylcholine/metabolism , Analysis of Variance , Animals , Area Under Curve , Channelrhodopsins , Corpus Striatum/drug effects , Dopamine Plasma Membrane Transport Proteins/metabolism , Electrochemical Techniques , Female , In Vitro Techniques , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Male , Mecamylamine/pharmacology , Mice , Mice, Transgenic , Microelectrodes , Mutation/genetics , Nicotinic Antagonists/pharmacology , Transduction, Genetic
15.
ACS Chem Neurosci ; 8(2): 215-217, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28169519

ABSTRACT

The 16th International Conference on Monitoring Molecules in Neuroscience (MMiN) was held in Gothenburg, Sweden in late spring 2016. This conference originated as a methods meeting focused on in vivo voltammetric techniques and microdialysis. Over time, however, the scope has evolved to include a number of other methods for neurochemical detection that range from single-cell fluorescence in vitro and in vivo in animal models to whole-brain imaging in humans. Overall, MMiN provides a unique forum for introducing new developments in neurochemical detection, as well as for reporting exciting neurobiological insights provided by established and novel methods. This Viewpoint includes a brief history of the meeting, factors that have contributed its evolution, and some highlights of MMiN 2016.


Subject(s)
Environmental Monitoring , Neurosciences/history , Neurosciences/trends , History, 20th Century , History, 21st Century , Humans
16.
Neuropharmacology ; 113(Pt A): 426-433, 2017 02.
Article in English | MEDLINE | ID: mdl-27793771

ABSTRACT

Lithium (Li+) is a drug widely employed for treating bipolar disorder, however the mechanism of action is not known. Here we study the effects of Li+ in cultured hippocampal neurons on a synaptic complex consisting of δ-catenin, a protein associated with cadherins whose mutation is linked to autism, and GRIP, an AMPA receptor (AMPAR) scaffolding protein, and the AMPAR subunit, GluA2. We show that Li+ elevates the level of δ-catenin in cultured neurons. δ-catenin binds to the ABP and GRIP proteins, which are synaptic scaffolds for GluA2. We show that Li+ increases the levels of GRIP and GluA2, consistent with Li+-induced elevation of δ-catenin. Using GluA2 mutants, we show that the increase in surface level of GluA2 requires GluA2 interaction with GRIP. The amplitude but not the frequency of mEPSCs was also increased by Li+ in cultured hippocampal neurons, confirming a functional effect and consistent with AMPAR stabilization at synapses. Furthermore, animals fed with Li+ show elevated synaptic levels of δ-catenin, GRIP, and GluA2 in the hippocampus, also consistent with the findings in cultured neurons. This work supports a model in which Li+ stabilizes δ-catenin, thus elevating a complex consisting of δ-catenin, GRIP and AMPARs in synapses of hippocampal neurons. Thus, the work suggests a mechanism by which Li+ can alter brain synaptic function that may be relevant to its pharmacologic action in treatment of neurological disease.


Subject(s)
Catenins/biosynthesis , Hippocampus/metabolism , Lithium/pharmacology , Neurons/metabolism , Receptors, AMPA/biosynthesis , Synapses/metabolism , Animals , Cells, Cultured , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Gene Knockdown Techniques , Hippocampus/drug effects , Mice , Mice, Inbred C57BL , Neurons/drug effects , Rats , Synapses/drug effects , Delta Catenin
17.
Basal Ganglia ; 6(3): 123-148, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27141430

ABSTRACT

Dopamine (DA) transmission is governed by processes that regulate release from axonal boutons in the forebrain and the somatodendritic compartment in midbrain, and by clearance by the DA transporter, diffusion, and extracellular metabolism. We review how axonal DA release is regulated by neuronal activity and by autoreceptors and heteroreceptors, and address how quantal release events are regulated in size and frequency. In brain regions densely innervated by DA axons, DA clearance is due predominantly to uptake by the DA transporter, whereas in cortex, midbrain, and other regions with relatively sparse DA inputs, the norepinephrine transporter and diffusion are involved. We discuss the role of DA uptake in restricting the sphere of influence of DA and in temporal accumulation of extracellular DA levels upon successive action potentials. The tonic discharge activity of DA neurons may be translated into a tonic extracellular DA level, whereas their bursting activity can generate discrete extracellular DA transients.

18.
Compr Physiol ; 7(1): 235-252, 2016 12 06.
Article in English | MEDLINE | ID: mdl-28135005

ABSTRACT

Release of neuroactive substances by exocytosis from dendrites is surprisingly widespread and is not confined to a particular class of transmitters: it occurs in multiple brain regions, and includes a range of neuropeptides, classical neurotransmitters, and signaling molecules, such as nitric oxide, carbon monoxide, ATP, and arachidonic acid. This review is focused on hypothalamic neuroendocrine cells that release vasopressin and oxytocin and midbrain neurons that release dopamine. For these two model systems, the stimuli, mechanisms, and physiological functions of dendritic release have been explored in greater detail than is yet available for other neurons and neuroactive substances. © 2017 American Physiological Society. Compr Physiol 7:235-252, 2017.


Subject(s)
Dendrites/metabolism , Neurotransmitter Agents/metabolism , Animals , Brain/metabolism , Calcium/metabolism , Dopamine/metabolism , Exocytosis , Oxytocin/metabolism , Vasopressins/metabolism
19.
Nat Commun ; 6: 8543, 2015 Oct 27.
Article in English | MEDLINE | ID: mdl-26503322

ABSTRACT

Insulin activates insulin receptors (InsRs) in the hypothalamus to signal satiety after a meal. However, the rising incidence of obesity, which results in chronically elevated insulin levels, implies that insulin may also act in brain centres that regulate motivation and reward. We report here that insulin can amplify action potential-dependent dopamine (DA) release in the nucleus accumbens (NAc) and caudate-putamen through an indirect mechanism that involves striatal cholinergic interneurons that express InsRs. Furthermore, two different chronic diet manipulations in rats, food restriction (FR) and an obesogenic (OB) diet, oppositely alter the sensitivity of striatal DA release to insulin, with enhanced responsiveness in FR, but loss of responsiveness in OB. Behavioural studies show that intact insulin levels in the NAc shell are necessary for acquisition of preference for the flavour of a paired glucose solution. Together, these data imply that striatal insulin signalling enhances DA release to influence food choices.


Subject(s)
Cholinergic Neurons/metabolism , Dopamine/metabolism , Insulin/metabolism , Interneurons/metabolism , Nucleus Accumbens/metabolism , Obesity/metabolism , Obesity/psychology , Animals , Food Preferences , Humans , Male , Rats , Rats, Sprague-Dawley , Receptor, Insulin/metabolism , Reward , Signal Transduction
20.
Philos Trans R Soc Lond B Biol Sci ; 370(1672)2015 Jul 05.
Article in English | MEDLINE | ID: mdl-26009764

ABSTRACT

Dopamine (DA) is a key transmitter in motor, reward and cogitative pathways, with DA dysfunction implicated in disorders including Parkinson's disease and addiction. Located in midbrain, DA neurons of the substantia nigra pars compacta project via the medial forebrain bundle to the dorsal striatum (caudate putamen), and DA neurons in the adjacent ventral tegmental area project to the ventral striatum (nucleus accumbens) and prefrontal cortex. In addition to classical vesicular release from axons, midbrain DA neurons exhibit DA release from their cell bodies and dendrites. Somatodendritic DA release leads to activation of D2 DA autoreceptors on DA neurons that inhibit their firing via G-protein-coupled inwardly rectifying K(+) channels. This helps determine patterns of DA signalling at distant axonal release sites. Somatodendritically released DA also acts via volume transmission to extrasynaptic receptors that modulate local transmitter release and neuronal activity in the midbrain. Thus, somatodendritic release is a pivotal intrinsic feature of DA neurons that must be well defined in order to fully understand the physiology and pathophysiology of DA pathways. Here, we review recent mechanistic aspects of somatodendritic DA release, with particular emphasis on the Ca(2+) dependence of release and the potential role of exocytotic proteins.


Subject(s)
Cell Body/metabolism , Dendrites/metabolism , Dopamine/metabolism , Exocytosis/physiology , Mesencephalon/cytology , Neurons/metabolism , Synaptic Transmission/physiology , Calcium/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...