Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 58(46): 4632-4640, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31638376

ABSTRACT

The mature forms of the TGF-ß family members GDF-11 and GDF-8 are highly similar 25 kDa homodimers with 90% amino acid sequence identity and 99% similarity. Cross-reactivity of GDF-11 and GDF-8 binding reagents is common, making it difficult to attribute distinct roles of these two proteins in biology. We report the selection of GDF-11 and GDF-8 specific SOMAmer (Slow Off-rate Modified Aptamer) reagents aided by a combination of positive selection for one protein coupled with counter-selection against the other. We identified GDF-11 specific SOMAmer reagents from four modified DNA libraries that showed a high affinity (Kd range 0.05-1.2 nM) for GDF-11 but did not bind to GDF-8 (Kd > 1 µM). Conversely, we identified one SOMAmer reagent for GDF-8 from one of the modified libraries that demonstrated excellent affinity (Kd = 0.23 nM) and specificity. In contrast, standard protocols that utilized only positive selection produced binding reagents with similar affinity for both proteins. High affinity and specificity were efficiently encoded in minimal sequences of 21 nucleotides for GDF-11 and 24 nucleotides for GDF-8. Further characterization in pull-down, competition, sandwich-binding, and kinetic studies revealed robust binding under a wide range of buffer and assay conditions. For highly similar proteins like GDF-11 and GDF-8, our method of selection coupled with counter-selection was essential for identification of high-affinity, specific reagents that have the potential to elucidate the fundamental distinction of these growth factors in biology.


Subject(s)
Aptamers, Nucleotide/chemistry , Bone Morphogenetic Proteins/analysis , Growth Differentiation Factors/analysis , Myostatin/analysis , Amino Acid Sequence , Base Sequence , Binding Sites , Epitopes/analysis , Humans , Indicators and Reagents , Recombinant Proteins/analysis , SELEX Aptamer Technique
SELECTION OF CITATIONS
SEARCH DETAIL
...