Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2027: 87-100, 2019.
Article in English | MEDLINE | ID: mdl-31309475

ABSTRACT

Optical sensing is an important research field due to its proven ability to be extremely sensitive, nondestructive, and applicable to sensing a wide range of chemical, thermal, electric, or magnetic phenomena. Beyond traditional optical sensors that often rely on bulky setups, plasmonic nanostructures can offer many advantages based on their sensitivity, compact form, cost-effectiveness, multiplexing compatibility, and compatibility with many standard semiconductor nanofabrication techniques. In particular, plasmon-enhanced optical transmission through arrays of nanostructured holes has led to the development of a new generation of optical sensors. In this chapter we present a simple fabrication technique to use plasmonic nanostructures as compact sensors. We position the nanohole array, an LED illumination source, and a spacer layer directly on top of a standard complementary metal-oxide-semiconductor (CMOS) imager chip. This setup is a viable sensor platform in both liquid and gas environments. These devices could operate as low-cost sensors for environmental monitoring, security, food safety, or monitoring small-molecule binding to extract affinity information and binding constants.


Subject(s)
Nanostructures/chemistry , Nanotechnology/methods , Optical Devices , Remote Sensing Technology/instrumentation , Semiconductors , Metals/chemistry , Miniaturization/methods , Nanotechnology/economics , Oxides/chemistry , Remote Sensing Technology/economics , Time Factors
2.
Nanotechnology ; 27(18): 184001, 2016 May 06.
Article in English | MEDLINE | ID: mdl-27010077

ABSTRACT

Plasmon-enhanced optical transmission through arrays of nano-structured holes has led to the development of a new generation of optical sensors. In this paper, to dramatically simplify the standard optical setups of these sensors, we position the nanoholes, an LED illumination source and a spacer layer directly on top of a CMOS imager chip. Transmitted light diffracts from the nanohole array, spreading into a spectrum over the space of a millimeter to land on the imager as a full spectrum. Our chip is used as a sensor in both a liquid and a gas environment. The spectrum is monitored in real-time and the plasmon-enhanced transmission peaks shift upon exposure to different concentrations of glycerol-in-water solutions or ethanol vapors in nitrogen. While liquids provide good refractive index contrast for sensing, to enhance sensitivity to solvent vapors, we filled the nanoholes with solvatochromic dyes. This on-chip solution circumvents the bulky components (e.g. microscopes, coupling optics, and spectrometers) needed for traditional plasmonic sensing setups, uses the nanohole array as both the sensing surface and a diffraction grating, and maintains good sensitivity. Finally, we show simultaneous sensing from two side-by-side locations, demonstrating potential for multiplexing and lab on a chip integration.

3.
ACS Nano ; 8(10): 10941-6, 2014 Oct 28.
Article in English | MEDLINE | ID: mdl-25268457

ABSTRACT

In this paper, we demonstrate dynamic placement of locally enhanced plasmonic fields using holographic laser illumination of a silver nanohole array. To visualize these focused "hotspots", the silver surface was coated with various biological samples for surface-enhanced Raman spectroscopy (SERS) imaging. Due to the large field enhancements, blinking behavior of the SERS hotspots was observed and processed using a stochastic optical reconstruction microscopy algorithm enabling super-resolution localization of the hotspots to within 10 nm. These hotspots were then shifted across the surface in subwavelength (<100 nm for a wavelength of 660 nm) steps using holographic illumination from a spatial light modulator. This created a dynamic imaging and sensing surface, whereas static illumination would only have produced stationary hotspots. Using this technique, we also show that such subwavelength shifting and localization of plasmonic hotspots has potential for imaging applications. Interestingly, illuminating the surface with randomly shifting SERS hotspots was sufficient to completely fill in a wide field of view for super-resolution chemical imaging.


Subject(s)
Spectrum Analysis, Raman/methods , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...