Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Image Process ; 26(10): 5019-5030, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28708560

ABSTRACT

The locality preserving projections (LPP) algorithm is a recently developed linear dimensionality reduction algorithm that has been frequently used in face recognition and other applications. However, the projection matrix in LPP is not orthogonal, thus creating difficulties for both reconstruction and other applications. As the orthogonality property is desirable, orthogonal LPP (OLPP) has been proposed so that an orthogonal projection matrix can be obtained based on a step by step procedure; however, this makes the algorithm computationally more expensive. Therefore, in this paper, we propose a fast and orthogonal version of LPP, called FOLPP, which simultaneously minimizes the locality and maximizes the globality under the orthogonal constraint. As a result, the computation burden of the proposed algorithm can be effectively alleviated compared with the OLPP algorithm. Experimental results on two face recognition data sets and two hyperspectral data sets are presented to demonstrate the effectiveness of the proposed algorithm.

2.
IEEE Trans Cybern ; 47(3): 566-578, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27116756

ABSTRACT

We propose perceptually guided photo retargeting, which shrinks a photo by simulating a human's process of sequentially perceiving visually/semantically important regions in a photo. In particular, we first project the local features (graphlets in this paper) onto a semantic space, wherein visual cues such as global spatial layout and rough geometric context are exploited. Thereafter, a sparsity-constrained learning algorithm is derived to select semantically representative graphlets of a photo, and the selecting process can be interpreted by a path which simulates how a human actively perceives semantics in a photo. Furthermore, we learn the prior distribution of such active graphlet paths (AGPs) from training photos that are marked as esthetically pleasing by multiple users. The learned priors enforce the corresponding AGP of a retargeted photo to be maximally similar to those from the training photos. On top of the retargeting model, we further design an online learning scheme to incrementally update the model with new photos that are esthetically pleasing. The online update module makes the algorithm less dependent on the number and contents of the initial training data. Experimental results show that: 1) the proposed AGP is over 90% consistent with human gaze shifting path, as verified by the eye-tracking data, and 2) the retargeting algorithm outperforms its competitors significantly, as AGP is more indicative of photo esthetics than conventional saliency maps.

3.
IEEE Trans Image Process ; 25(12): 5678-5688, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28113973

ABSTRACT

Learning high-level image representations using object proposals has achieved remarkable success in multi-label image recognition. However, most object proposals provide merely coarse information about the objects, and only carefully selected proposals can be helpful for boosting the performance of multi-label image recognition. In this paper, we propose an object-proposal-free framework for multi-label image recognition: random crop pooling (RCP). Basically, RCP performs stochastic scaling and cropping over images before feeding them to a standard convolutional neural network, which works quite well with a max-pooling operation for recognizing the complex contents of multi-label images. To better fit the multi-label image recognition task, we further develop a new loss function-the dynamic weighted Euclidean loss-for the training of the deep network. Our RCP approach is amazingly simple yet effective. It can achieve significantly better image recognition performance than the approaches using object proposals. Moreover, our adapted network can be easily trained in an end-to-end manner. Extensive experiments are conducted on two representative multi-label image recognition data sets (i.e., PASCAL VOC 2007 and PASCAL VOC 2012), and the results clearly demonstrate the superiority of our approach.

4.
IEEE Trans Image Process ; 25(12): 5814-5827, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28114066

ABSTRACT

The increasing number of 3D objects in various applications has increased the requirement for effective and efficient 3D object retrieval methods, which attracted extensive research efforts in recent years. Existing works mainly focus on how to extract features and conduct object matching. With the increasing applications, 3D objects come from different areas. In such circumstances, how to conduct object retrieval becomes more important. To address this issue, we propose a multi-view object retrieval method using multi-scale topic models in this paper. In our method, multiple views are first extracted from each object, and then the dense visual features are extracted to represent each view. To represent the 3D object, multi-scale topic models are employed to extract the hidden relationship among these features with respect to varied topic numbers in the topic model. In this way, each object can be represented by a set of bag of topics. To compare the objects, we first conduct topic clustering for the basic topics from two data sets, and then generate the common topic dictionary for new representation. Then, the two objects can be aligned to the same common feature space for comparison. To evaluate the performance of the proposed method, experiments are conducted on two data sets. The 3D object retrieval experimental results and comparison with existing methods demonstrate the effectiveness of the proposed method.

5.
IEEE Trans Image Process ; 25(1): 195-208, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26552088

ABSTRACT

A sketch-based image retrieval often needs to optimize the tradeoff between efficiency and precision. Index structures are typically applied to large-scale databases to realize efficient retrievals. However, the performance can be affected by quantization errors. Moreover, the ambiguousness of user-provided examples may also degrade the performance, when compared with traditional image retrieval methods. Sketch-based image retrieval systems that preserve the index structure are challenging. In this paper, we propose an effective sketch-based image retrieval approach with re-ranking and relevance feedback schemes. Our approach makes full use of the semantics in query sketches and the top ranked images of the initial results. We also apply relevance feedback to find more relevant images for the input query sketch. The integration of the two schemes results in mutual benefits and improves the performance of the sketch-based image retrieval.

SELECTION OF CITATIONS
SEARCH DETAIL
...