Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Plant Physiol ; 195(3): 2428-2442, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38590143

ABSTRACT

Despite lignin being a key component of wood, the dynamics of tracheid lignification are generally overlooked in xylogenesis studies, which hampers our understanding of environmental drivers and blurs the interpretation of isotopic and anatomical signals stored in tree rings. Here, we analyzed cell wall formation in silver fir (Abies alba Mill.) tracheids to determine if cell wall lignification lags behind secondary wall deposition. For this purpose, we applied a multimodal imaging approach combining transmitted light microscopy (TLM), confocal laser scanning microscopy (CLSM), and confocal Raman microspectroscopy (RMS) on anatomical sections of wood microcores collected in northeast France on 11 dates during the 2010 growing season. Wood autofluorescence after laser excitation at 405 and 488 nm associated with the RMS scattering of lignin and cellulose, respectively, which allowed identification of lignifying cells (cells showing lignified and nonlignified wall fractions at the same time) in CLSM images. The number of lignifying cells in CLSM images mirrored the number of wall-thickening birefringent cells in polarized TLM images, revealing highly synchronized kinetics for wall thickening and lignification (similar timings and durations at the cell level). CLSM images and RMS chemical maps revealed a substantial incorporation of lignin into the wall at early stages of secondary wall deposition. Our results show that most of the cellulose and lignin contained in the cell wall undergo concurrent periods of deposition. This suggests a strong synchronization between cellulose and lignin-related features in conifer tree-ring records, as they originated over highly overlapped time frames.


Subject(s)
Abies , Cell Wall , Cellulose , Lignin , Microscopy, Confocal , Lignin/metabolism , Cellulose/metabolism , Cell Wall/metabolism , Abies/metabolism , Wood/chemistry , Wood/anatomy & histology , Multimodal Imaging/methods , Spectrum Analysis, Raman/methods
3.
Front Physiol ; 7: 70, 2016.
Article in English | MEDLINE | ID: mdl-26973538

ABSTRACT

A large family from a small village in Madagascar, Antanetilava, is known to present with colored teeth. Through previous collaboration and 4 successive visits in 1994, 2004, 2005, and 2012, we provided dental care to the inhabitants and diagnosed dentinogenesis imperfecta. Recently, using whole exome sequencing we confirmed the clinical diagnosis by identifying a novel single nucleotide deletion in exon 5 of DSPP. This paper underlines the necessity of long run research, the importance of international and interpersonal collaborations as well as the major contribution of next generation sequencing tools in the genetic diagnosis of rare oro-dental anomalies. This study is registered in ClinicalTrials (https://clinicaltrials.gov) under the number NCT02397824.

4.
J Med Genet ; 53(2): 98-110, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26502894

ABSTRACT

BACKGROUND: Orodental diseases include several clinically and genetically heterogeneous disorders that can present in isolation or as part of a genetic syndrome. Due to the vast number of genes implicated in these disorders, establishing a molecular diagnosis can be challenging. We aimed to develop a targeted next-generation sequencing (NGS) assay to diagnose mutations and potentially identify novel genes mutated in this group of disorders. METHODS: We designed an NGS gene panel that targets 585 known and candidate genes in orodental disease. We screened a cohort of 101 unrelated patients without a molecular diagnosis referred to the Reference Centre for Oro-Dental Manifestations of Rare Diseases, Strasbourg, France, for a variety of orodental disorders including isolated and syndromic amelogenesis imperfecta (AI), isolated and syndromic selective tooth agenesis (STHAG), isolated and syndromic dentinogenesis imperfecta, isolated dentin dysplasia, otodental dysplasia and primary failure of tooth eruption. RESULTS: We discovered 21 novel pathogenic variants and identified the causative mutation in 39 unrelated patients in known genes (overall diagnostic rate: 39%). Among the largest subcohorts of patients with isolated AI (50 unrelated patients) and isolated STHAG (21 unrelated patients), we had a definitive diagnosis in 14 (27%) and 15 cases (71%), respectively. Surprisingly, COL17A1 mutations accounted for the majority of autosomal-dominant AI cases. CONCLUSIONS: We have developed a novel targeted NGS assay for the efficient molecular diagnosis of a wide variety of orodental diseases. Furthermore, our panel will contribute to better understanding the contribution of these genes to orodental disease. TRIAL REGISTRATION NUMBERS: NCT01746121 and NCT02397824.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Mutation , Tooth Abnormalities/genetics , Amelogenesis Imperfecta/genetics , Autoantigens/genetics , Chromosome Deletion , Chromosome Disorders/genetics , Chromosomes, Human, Pair 11/genetics , Cohort Studies , Coloboma/genetics , Dentin Dysplasia/genetics , France , Hearing Loss, Sensorineural/genetics , Humans , Non-Fibrillar Collagens/genetics , Reproducibility of Results , Collagen Type XVII
5.
Front Physiol ; 6: 185, 2015.
Article in English | MEDLINE | ID: mdl-26157393

ABSTRACT

The penetration of cariogenic oral bacteria into enamel and dentin during the caries process triggers an immune/inflammatory response in the underlying pulp tissue, the reduction of which is considered a prerequisite to dentinogenesis-based pulp regeneration. If the role of odontoblasts in dentin formation is well known, their involvement in the antibacterial response of the dental pulp to cariogenic microorganisms has yet to be elucidated. Our aim here was to determine if odontoblasts produce nitric oxide (NO) with antibacterial activity upon activation of Toll-like receptor-2 (TLR2), a cell membrane receptor involved in the recognition of cariogenic Gram-positive bacteria. Human odontoblast-like cells differentiated from dental pulp explants were stimulated with the TLR2 synthetic agonist Pam2CSK4. We found that NOS1, NOS2, and NOS3 gene expression was increased in Pam2CSK4-stimulated odontoblast-like cells compared to unstimulated ones. NOS2 was the most up-regulated gene. NOS1 and NOS3 proteins were not detected in Pam2CSK4-stimulated or control cultures. NOS2 protein synthesis, NOS activity and NO extracellular release were all augmented in stimulated samples. Pam2CSK4-stimulated cell supernatants reduced Streptococcus mutans growth, an effect counteracted by the NOS inhibitor L-NAME. In vivo, the NOS2 gene was up-regulated in the inflamed pulp of carious teeth compared with healthy ones. NOS2 protein was immunolocalized in odontoblasts situated beneath the caries lesion but not in pulp cells from healthy teeth. These results suggest that odontoblasts may participate to the antimicrobial pulp response to dentin-invading Gram-positive bacteria through NOS2-mediated NO production. They might in this manner pave the way for accurate dental pulp healing and regeneration.

6.
Plant Cell Environ ; 38(4): 670-84, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25099629

ABSTRACT

Poplar genotypes differ in transpiration efficiency (TE) at leaf and whole-plant level under similar conditions. We tested whether atmospheric vapour pressure deficit (VPD) affected TE to the same extent across genotypes. Six Populus nigra genotypes were grown under two VPD. We recorded (1) (13)C content in soluble sugars; (2) (18)O enrichment in leaf water; (3) leaf-level gas exchange; and (4) whole-plant biomass accumulation and water use. Whole-plant and intrinsic leaf TE and (13)C content in soluble sugars differed significantly among genotypes. Stomatal conductance contributed more to these differences than net CO2 assimilation rate. VPD increased water use and reduced whole-plant TE. It increased intrinsic leaf-level TE due to a decline in stomatal conductance. It also promoted higher (18)O enrichment in leaf water. VPD had no genotype-specific effect. We detected a deviation in the relationship between (13)C in leaf sugars and (13)C predicted from gas exchange and the standard discrimination model. This may be partly due to genotypic differences in mesophyll conductance, and to its lack of sensitivity to VPD. Leaf-level (13)C discrimination was a powerful predictor of the genetic variability of whole-plant TE irrespective of VPD during growth.


Subject(s)
Plant Transpiration/physiology , Populus/physiology , Water/physiology , Genotype , Mesophyll Cells/metabolism , Oxygen/metabolism , Oxygen Isotopes/analysis , Plant Leaves/growth & development , Plant Leaves/physiology , Plant Stomata/genetics , Plant Stomata/physiology , Populus/growth & development , Trees , Vapor Pressure
7.
J Prosthodont ; 24(5): 424-31, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25522047

ABSTRACT

This manuscript describes an interdisciplinary approach over a period of 8 years combining surgical and prosthodontic treatment of a young patient diagnosed with hypocalcified-type amelogenesis imperfecta and anterior open bite. The treatment procedures included transitional restorations, orthodontic treatment, and maxillofacial surgery with a one-piece Le Fort I osteotomy, bilateral mandibular osteotomy, and genioplasty. The definitive prosthetic rehabilitation consisted of 28 zirconia-based ceramic single crowns restoring both esthetics and function. Photographs and radiographs associated with clinical evaluation were used in the maintenance period. Two-year follow-up revealed satisfactory results and no deterioration in the restorations.


Subject(s)
Amelogenesis Imperfecta/therapy , Prosthodontics , Amelogenesis Imperfecta/diagnosis , Follow-Up Studies , Humans , Open Bite
8.
Plant Cell Environ ; 36(1): 87-102, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22687135

ABSTRACT

(13) C discrimination between atmosphere and bulk leaf matter (Δ(13) C(lb) ) is frequently used as a proxy for transpiration efficiency (TE). Nevertheless, its relevance is challenged due to: (1) potential deviations from the theoretical discrimination model, and (2) complex time integration and upscaling from leaf to whole plant. Six hybrid genotypes of Populus deltoides×nigra genotypes were grown in climate chambers and tested for whole-plant TE (i.e. accumulated biomass/water transpired). Net CO(2) assimilation rates (A) and stomatal conductance (g(s) ) were recorded in parallel to: (1) (13) C in leaf bulk material (δ(13) C(lb) ) and in soluble sugars (δ(13) C(ss) ) and (2) (18) O in leaf water and bulk leaf material. Genotypic means of δ(13) C(lb) and δ(13) C(ss) were tightly correlated. Discrimination between atmosphere and soluble sugars was correlated with daily intrinsic TE at leaf level (daily mean A/g(s) ), and with whole-plant TE. Finally, g(s) was positively correlated to (18) O enrichment of bulk matter or water of leaves at individual level, but not at genotype level. We conclude that Δ(13) C(lb) captures efficiently the genetic variability of whole-plant TE in poplar. Nevertheless, scaling from leaf level to whole-plant TE requires to take into account water losses and respiration independent of photosynthesis, which remain poorly documented.


Subject(s)
Plant Transpiration , Populus/physiology , Carbon Isotopes/analysis , Genotype , Oxygen Isotopes/analysis , Plant Leaves/physiology , Species Specificity
9.
Eur J Med Genet ; 55(8-9): 441-5, 2012.
Article in English | MEDLINE | ID: mdl-22522175

ABSTRACT

Kenny-Caffey syndrome (KCS) is a rare osteosclerotic bone dysplasia characterized by hypocalcemia, short stature, ophthalmological features, and teeth anomalies. The TBCE gene coding for a tubulin-specific chaperone E, is located at chromosome 1q42-q43, and is responsible for the recessive form. After reviewing the literature, we found around 60 cases, however with limited dental data. In this article 5 new individuals with KCS, are described focusing on oral findings. All cases had short roots and showed dental anomalies as hypo/oligodontia, microdontia. Dental anomalies are a constant feature in KCS, further study is required to better delineate the syndrome.


Subject(s)
Abnormalities, Multiple , Dwarfism , Hyperostosis, Cortical, Congenital , Hypocalcemia , Tooth Abnormalities , Abnormalities, Multiple/diagnostic imaging , Abnormalities, Multiple/genetics , Dwarfism/diagnostic imaging , Dwarfism/genetics , Foot Deformities, Congenital/diagnostic imaging , Foot Deformities, Congenital/genetics , Humans , Hyperostosis, Cortical, Congenital/diagnostic imaging , Hyperostosis, Cortical, Congenital/genetics , Hypocalcemia/diagnostic imaging , Hypocalcemia/genetics , Phenotype , Radiography , Tooth Abnormalities/diagnostic imaging , Tooth Abnormalities/genetics
10.
Tree Physiol ; 31(11): 1183-93, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22011967

ABSTRACT

Genetic differences in δ¹³C (isotopic composition of dry matter carbon) have been evidenced among poplar genotypes at juvenile stages. To check whether such differences were maintained with age in trees growing in plantations, we investigated the time course of δ¹³C as recorded in annual tree rings from different genotypes growing at three sites in southwestern France and felled at ∼15-17 years. Wood cores were cut from tree discs to record the time course of annual basal area increment (BAI). The isotopic ratio δ¹³C was recorded in bulk wood and in extracted cellulose from the annual rings corresponding to the period 1996-2005. Discrimination against ¹³C between atmosphere and tissues (Δ¹³C) was computed by taking into account the inter-annual time course of δ¹³C in the atmosphere. Annual BAI increased steadily and stabilized at about 8 years. An offset in δ¹³C of ∼1‰ was recorded between extracted cellulose and bulk wood. It was relatively stable among genotypes within sites but varied among sites and increased slightly with age. Site effects as well as genotype differences were detected in Δ¹³C recorded from the cellulose fraction. Absolute values as well as the genotype ranking of Δ¹³C remained stable with age in the three sites. Genotype means of Δ¹³C were not correlated to annual BAI. We conclude that genotypic differences of Δ¹³C occur in older poplar trees in plantations, and that the differences as well as the genotype ranking remain stable while trees age until harvest.


Subject(s)
Carbon Isotopes/metabolism , Carbon/metabolism , Cellulose/metabolism , Genetic Variation , Genotype , Populus/genetics , Wood/metabolism , Atmosphere , France , Populus/growth & development , Populus/metabolism , Trees , Wood/growth & development
11.
Plant Cell Environ ; 34(8): 1332-44, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21486302

ABSTRACT

We assessed the extent of recent environmental changes on leaf morphological (stomatal density, stomatal surface, leaf mass per unit area) and physiological traits (carbon isotope composition, δ(13)C(leaf) , and discrimination, Δ(13)C(leaf) , oxygen isotope composition, δ(18)O(leaf) ) of two tropical rainforest species (Dicorynia guianensis; Humiria balsamifera) that are abundant in the Guiana shield (Northern Amazonia). Leaf samples were collected in different international herbariums to cover a 200 year time-period (1790-2004) and the whole Guiana shield. Using models describing carbon and oxygen isotope fractionations during photosynthesis, different scenarios of change in intercellular CO(2) concentrations inside the leaf (C(i)), stomatal conductance (g), and photosynthesis (A) were tested in order to understand leaf physiological response to increasing air CO(2) concentrations (C(a)). Our results confirmed that both species displayed physiological response to changing C(a) . For both species, we observed a decrease of about 1.7‰ in δ(13)C(leaf) since 1950, without significant change in Δ(13)C(leaf) and leaf morphological traits. Furthermore, there was no clear change in δ(18)O(leaf) for Humiria over this period. Our simulation approach revealed that an increase in A, rather than a decrease in g, explained the observed trends for these tropical rainforest species, allowing them to maintain a constant ratio of C(i)/C(a) .


Subject(s)
Carbon Dioxide , Plant Leaves/physiology , Plant Stomata/physiology , Trees/physiology , Carbon Isotopes , Cellulose/chemistry , Computer Simulation , French Guiana , History, 18th Century , History, 19th Century , History, 20th Century , History, 21st Century , Oxygen Isotopes , Photosynthesis/physiology , Plant Transpiration/physiology , Tropical Climate
12.
Arch Oral Biol ; 52(11): 1026-31, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17645864

ABSTRACT

Amelogenin gene (AMEL) encodes for a protein that plays important roles in the organization and structure of enamel. A recent evolutionary analysis of AMELX in mammals has revealed, aside to well-conserved 5' and 3' regions, a variable region located in the largest exon (exon 6), which strongly suggested the possible existence of polymorphism in human AMELX. A detailed analysis of this region was of fundamental importance for genetic studies. We have looked for variations in human AMELX exon 6 from 100 AMELX alleles in a randomized European population, using denaturing high-performance liquid chromatography (dHPLC). We also have looked for AMELX variants in databases, and compared this region in nine primates. There were no variations in the AMELX sequences analysed, but two synonymous single-nucleotide polymorphisms were found in databases. Alignment of the primate exon 6 sequences revealed that AMELX is highly constrained, as illustrated by 100% nucleotide identity found between humans and chimpanzee, and from 99.9 to 94.8% nucleotide identity in the other species. In contrast to what was suspected from the evolutionary analysis, we conclude that AMELX polymorphism should occur at low level in humans. This finding leads us to speculate that the high constraint observed in primate AMELX is related to its location on the X chromosome, and is due to selection at a single locus.


Subject(s)
Amelogenin/genetics , Polymorphism, Single Nucleotide , Primates/genetics , Amelogenesis Imperfecta/genetics , Amino Acid Sequence , Animals , Base Sequence , Chromatography, High Pressure Liquid , Databases, Genetic , Evolution, Molecular , Humans , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction/methods , Sequence Alignment , X Chromosome
SELECTION OF CITATIONS
SEARCH DETAIL
...